

Horizon 2020

Societal Challenge: Improving the air quality and reducing the carbon footprint of European cities

Project: 690105 - ICARUS

Full project title:

Integrated Climate forcing and Air pollution Reduction in Urban Systems

D3.4 Report on results of source apportionment in all participating cities

WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales

> Lead beneficiary: NCSRD Date: February 2018 Nature: Report Dissemination level: PU

D3.4 - Report on results of source apportionment in all participating cities

WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	2/40

TABLE OF CONTENTS

1	SC	OPE	1
2	ΙΝΤ		5
3	PO	SITIVE MATRIX FACTORIZATION (PMF)	ò
3.1	I	PMF Mathematical background	6
3.2	2	Data pre-treatment, analysis of input data and model runs	7
3.3	3	PMF Results	B
3	.3.1	PMF results for Athens	8
	3.3.	1.a Athens traffic site 1 1.b Athens urban background site 1 1.c Athens rural site 1	1
3	.3.2	PMF results for Brno1	5
	3.3.	2.a Brno traffic site 1 2.b Brno urban background site 1 2.c Brno rural site 1	7
3	.3.3	PMF results for Ljubljana2	1
	3.3.	3.a Ljubljana traffic site	3
3	.3.4	PMF results for Thessaloniki2	7
	3.3.	4.a Thessaloniki traffic site 2 4.b Thessaloniki background site 2 4.c Thessaloniki rural site 3	9
3	.3.5	Overview of PMF results	3
4	PR	INCIPAL COMPONENT ANALYSIS (PCA)	1
4.1	I	PCA application	4
4.2	2	PCA results	4
5	со	NCLUSIONS)
6	RE	FERENCES)

ICARUS	D3.4 - Report on results of source apportionment in all participating cities		
	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	3/40

Document Information

Grant Agreement Number	690105	Acronym	ICARUS
Full title	Integrated Climate forcing and Air pollution Reduction in Urban Systems		
Project URL	www.icarus2020.eu		
Project Officer	Mirjam Witschke - Mirj	am.WITSCHKE@ec.eu	ropa.eu

Delivery date	Contractual	October 2017	Actual February 2018	
Status	Draft 🗆		Final first version \checkmark	
Nature	Demonstrator	Report V	Prototype	Other D
Dissemination level	Confidential	Public V		

Responsible Author (Partners)	NCSRD			
Responsible	D. Saraga, Th. Maggos		Email	tmaggos@ipta.demokritos.gr
Author	Partner	NCSRD	Phone	+30 2106503716
Other partners (Institution)	AUTH, JSI, MU	, ISCIII, USTUT		

Document History

Name (Institution)	Date	Version
NCSRD	October 2017	First draft
AUTH	November 2017	Second draft
JSI, ISCIII, MU, USTUTT	December 2017	Third draft
NCSRD	February 2018	Final first version

	D3.4 - Report on results of source apportionment in all participating cities		
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	4/40

1 Scope

The scope of the present report is to present the results from the source apportionment methods application on PM2.5 data collected in four European cities (Athens, Brno, Ljubljana and Thessaloniki) in the frame of ICARUS project. In particular, PM2.5 samples collected from three different sites in each city (traffic, urban background and rural, see Table 1.1) were chemically analyzed for ions, metals, organic/elemental carbon (OC/EC) and Polycyclic Aromatic Compounds (PAHs). The chemical composition data were inserted in PMF (Positive Matrix Factorization) and PCA (Principal Component Analysis) models with the scope of identifying the main groups of sources and estimating their contribution to PM2.5 concentrations.

Table1.1. ICARUS monitoring sites in Athens, Brno, Ljubljana, Madrid and Thessaloniki.

		Monitoring sites	
Cities (responsible partner)	Traffic	Urban Background	Regional
Athens (NCSRD)	Marousi	Ag. Paraskevi	Aliartos Distance from city center: 101 Km
Brno (MU)	Brno-Svatoplukova	Brno-Lány	Košetice Distance from city centre: 130 km
Ljubljana (JSI)	MOL – Vosnjakova	ARSO – Bezigrad	TETOL – Zadobrova Distance from city center: 7 km
Madrid (ISCIII)	E. Aguirre station	Farolillo station	Casa de Campo station
Thessaloniki (AUTH)	1) Egnatia 2) University campus	1) Stavroupoli 2) Eptapyrgio	Neochorouda Distance from city center: 15 km

ICARUS	D3.4 - Report on results of source apportionment in all participating cities		
	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	5/40

2 Introduction

Source Apportionment (SA) is the practice of deriving information about pollution sources and the amount they contribute to ambient air pollution levels based on the composition or fingerprints of the sources. One of the SA main approaches is receptor modeling. Receptor-oriented models (also known as receptor models (RMs)) apportion the measured mass of an atmospheric pollutant at a given site, called the receptor, to its emission sources by using multivariate analysis to solve a mass balance equation. These tools have the advantage of providing information derived from real-world measurements, including estimations of output uncertainty. Depending on the knowledge about emission sources there is a wide range of receptor models available from multivariate models like PCA (principal component analysis) and PMF (positive matrix factor), if the knowledge about the emission source is limited, up to regression models and CBM (chemical mass balance) models, if the knowledge about the emission sources is complete.

ICARUS	D3.4 - Report on results of source apportionment in all participating cities		
	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	6/40

3 Positive Matrix Factorization (PMF)

3.1 PMF Mathematical background

PMF introduces a weighting scheme taking into account errors of the data points, which are used as point-by-point weights. Adjustment of the corresponding error estimates also allows it to handle missing and below detection limit data. Moreover, non-negative constraints are implemented in order to obtain more physically meaningful factors. The latest PMF version available by USEPA (PMF 5.0) has been used in the present task. PMF analysis background is described in detail by Paatero, 1997. In brief, the factor model can be written as

$$X = GF + E, \qquad (1)$$

where X is the known $n \times m$ matrix of the m measured chemical species in n samples. G is an $n \times p$ matrix of the p sources contributions to the samples (time variations). F is a $p \times m$ matrix of source compositions (source profiles). Both G and F are factor matrices to be determined. E is defined as a residual matrix, i.e., the difference between the measurement X and the model Y as a function of factors G and F.

$$e_{ij} = x_{ij} - y_{ij} = x_{ij} - \sum_{k=1}^{p} g_{ik} f_{kj} (i = 1, ..., n; j = 1, ..., m; k = 1, ..., p)$$
(2)

The objective of PMF is to minimize the sum of the squares of the residuals weighted inversely with error estimates of the data points. Furthermore, PMF constrains all of the elements of *G* and *F* to be non-negative; meaning that sources cannot have negative species concentration ($f_{kj} \ge 0$) and samples cannot have a negative source contribution ($g_{ik} \ge 0$). The task of PMF analysis can thus be described as to minimize Q, which is defined as

$$Q(E) = \sum_{i=1}^{n} \sum_{j=1}^{m} (e_{ij} / s_{ij})^{2}$$
(3)

with $f_{kj} \ge 0$; $g_{ik} \ge 0$ and s_{ij} is the error estimate for x_{ij} .

In some cases other auxiliary equations can be added in order to include a priori information such as well-known chemical profiles for certain sources (Paatero and Hopke, 2009). The auxiliary equations can be applied to the selected solution in the form of constraints, which can lead to a free rotation of the solution with better physical meaning than the original one. Further, a number of rotations blocking zero values can be introduced to the matrix increasing the rotational stability of the solution.

	D3.4 - Report on results of source apportionment in all participating cities		
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	7/40

3.2 Data pre-treatment, analysis of input data and model runs

EPA PMFv.5 model was run for the three sampling sites (rural, traffic and urban background) of Athens, Thessaloniki, Brno and Ljubljana cities. Data from the winter sampling periods were used. The model application on Madrid's data has not been completed yet because samples chemical analysis is in progress.

PM2.5 samples collected during the ICARUS measurement campaigns were analyzed for 27 PAHs, 24 trace elements, anions (Cl⁻, NO₃⁻, SO₄²⁻), elemental and organic carbon (EC, OC). Cations and PAHs from some cities were missing. Table 3.1 presents the available data which were used to run models for each city.

			PM mass					
			concentration	anions	cations	metals	PAHs	OCEC
city	site	period						
Athens	regional	winter	✓	✓		✓	partly	✓
	traffic	winter	✓	✓		✓	✓	✓
	urban backgr.	winter	√	✓		✓	✓	✓
Brno	regional	winter	✓	✓		✓	partly	
	traffic	winter	√	✓		✓		✓
	urban backgr.	winter	✓	✓		✓	✓	✓
Lubliana	regional	winter	√	√		✓		✓
	traffic	winter	✓	✓		√	✓	✓
	urban backgr.	winter	✓	✓		✓	✓	✓
Madrid	regional	winter	√	✓				✓
	traffic	winter	✓	✓				✓
	urban backgr.	winter	✓	✓				✓
Thessaloniki	regional	winter	✓	✓		✓		✓
	traffic	winter	✓	√		✓		✓
	urban backgr.	winter	✓	√		✓		✓

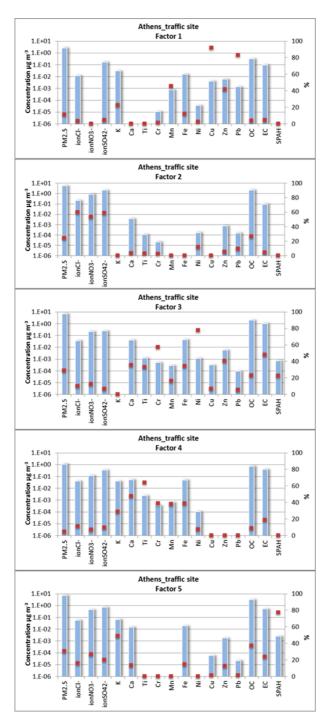
Table 3.1. Data availability for source apportionment models' application

However, for the input to the model matrix, lighter PAHS were excluded due to their volatilization and a sum of the heaviest (Benzo[b]fluoranthene, Benzo[k]fluoranthene, Benzo[e]pyrene, Benzo[a]pyrene, Indeno[1,2,3-cd]pyrene, Benzo[ghi]perylene) was inserted as one specie, 'SPAHs'. For avoiding double mass counting, either S or $SO_4^{2^2}$ was excluded from the analysis. Depending on the case, 'bad' species were excluded from the analysis due to the high percentage of missing values. On the other hand, depending on the case, some species were set as 'weak' due to their low signal/noise ratio (S/N) or/and bad scaled residuals (d-matrix). Finally, outliers were excluded from the analysis. Concentration data below the detection limit (the maximum reported detection limit was used as a conservative limit for all samples) was substituted with one-half of the detection limit and missing concentration data were substituted with the median value (Polissar et al., 2001). The modeling extra uncertainty was adjusted to 8-10%.

	D3.4 - Report on results of source apportionment in all participating cities				
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU		
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	8/40		

Thirty runs were performed for each factor, in order to obtain Q-value stability. All runs converged and Q values ranged between ±1.2%. In each case, the Q-robust value was lower than 1.5 times the Q-true value, indicating that outliers are not significantly impacting the Q value. The optimal number of factors was determined by examining the Q values for PMF solutions resulting from a range of the -number of factors- values without excluding the solution's physical validity. A range of solutions were examined with different number of factors (3-8) in each case, and the solution of meaningful sources was selected. A limitation of PMF is that if factors number increases from the optimal, some factor profiles are split to profiles with no physical meaning, while the rotational instability of the solution increases significantly. The two final steps were the bootstrap and Fpeak runs in order to examine the stability and the rotational ambiguity of the solution, respectively.

3.3 PMF Results


There was a good correlation between the model-predicted and the real PM2.5 mass (r>0.8) in all cases. In the following the results from PMF application for each site/city are presented.

3.3.1 PMF results for Athens

3.3.1.a Athens traffic site

PMF resulted in five sources/groups of sources for the traffic site in Athens. Figures 3.1a-e present the factor profiles in $\mu g m^3$ and % contribution. Figure 3.2 presents the % contribution of the five factors/sources to the measured PM2.5 concentration.

ICARUS	D3.4 - Report on results of source apportionment in all participating cities		
	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	9/40

Figures 3.1.a-e. Factor profiles in μ g m⁻³ and % contribution for the traffic site in Athens.

	D3.4 - Report on results of source apportionment in all participating cities				
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU		
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	10/40		

Factor 1 is strongly associated with **Cu, Zn, Pb** which are tracers of **industrial emissions o**r/and **non-exhaust traffic emissions** (e.g. brake and tire wear, combustion of lubricating oil). This factor contributes up to **11.4 %** of the measured PM2.5 at the traffic site of Athens.

Factor 2 is characterized by high percentages (>50%) of **chloride**, **nitrate** and **sulfate ions** as well as an amount of **organic carbon** (25%). which reveal a **secondary aerosol** source probably mixed with a **sea salt** source. In presence of specific tracers (e.g. ammonium, sodium), this factor would be split into two sources. This factor accounts for **24.5%** of the measured PM2.5 at the traffic site of Athens.

The high shares of **Ca**, **Fe**, **Ti** in **Factor 3** imply the crustal source origin of particles (natural source), combined with anthropogenic dust sources such as elemental materials emitted from vehicles brake pads, tires and mechanical parts and comprises the **mineral-road dust** source (Waked et al., 2014; Lucarelli et al., 2004). The ratio of OC/EC is lower than 0.7, which accordingly to previous studies (El Haddad et al., 2009; Amato et al., 2011; Waked et al., 2014) reveals traffic exhausts emissions. Thus, this **traffic-related factor** contributes to **28.8** % of the measured PM2.5 at the traffic site of Athens.

Factor 4 reveals a natural-origin source of mineral dust as it is traced by significant percentages of Ca, K, Ti, Fe. The contribution of this source to the measured PM2.5 levels at the traffic site is low (4.8%).

Finally, Factor 5 is strongly associated with PAHs, K and OC which are characteristic biomass burning/combustion tracers. While carbonaceous fractions are major components in combustion-related sources, the OC/EC ratio is considered as a robust diagnostic of biomass burning. Indeed, the observed ratio value lies within the range (2-6) found in other Mediterranean cities (Amato et al., 2016) while also being observed in wood burning emissions (Fine et al., 2001). It is worth mentioning that since 2010, Greek citizens have used alternative heating fuels, such as wood, due to the economic crisis and the increased price of diesel oil. This factor accounts for the quite high percentage of 30.5% of the measured PM2.5, which is expected during winter time (domestic heating) (Sarigiannis et al., 2014; Saraga et al., 2015).

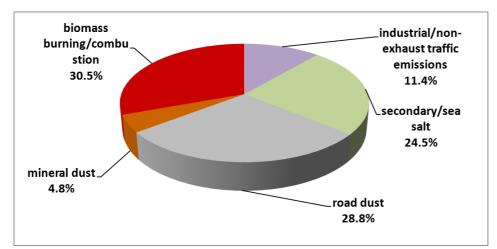
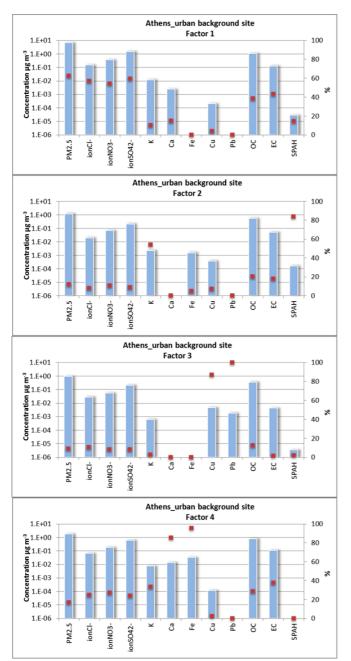



Figure 3.2. % contribution of the five factors/sources to the measured PM2.5 concentration for the traffic site in Athens.

	D3.4 - Report on results of source apportionment in all participating cities			
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU	
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	11/40	

3.3.1.b Athens urban background site

PMF resulted in four sources/groups of sources for the urban background site in Athens. Figures 3.3a-d present the factor profiles in μ g m⁻³ and % contribution. Figure 3.4 presents the % contribution of the four factors/sources to the measured PM2.5 concentration.

Figures 3.3a-d. Factor profiles in μ g m⁻³ and % contribution for the urban background site in Athens.

	D3.4 - Report on results of source apportionment in all participating cities				
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU		
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	12/40		

Factor 1 corresponds to a mixed traffic: the high percentages (>50%) of **chloride**, **nitrate** and **sulfate ions** reveal a **secondary aerosol** source mixed with a **sea salt** source. On the other hand, the presence of the two carbonaceous fractions (OC, EC) can be associated with **traffic** emissions. This mixed factor accounts for the quite high percentage of **60.2%** of the measured PM2.5 at the urban background site of Athens.

Factor 2 is associated with **PAHs, K** (84% and 54% respectively) and **OC** which are characteristic **biomass burning/combustion** tracers. This factor accounts for **11.9%** of the measured PM2.5 at the urban background site of Athens.

Factor 3 is characterized by high percentages of **Cu**, **Pb** and could correspond to **non-exhaust traffic emissions**. Its contribution to PM2.5 is **8.1**%.

Factor 4 reveals a source of crustal origin (**Ca, K, Ti**) enriched with traffic tracers (**EC, OC**) and therefore is corresponded to **road dust** (Waked et al., 2014; Lucarelli et al., 2004). This factor contributes to **19.5**% of the measured PM2.5 at the urban background site of Athens.

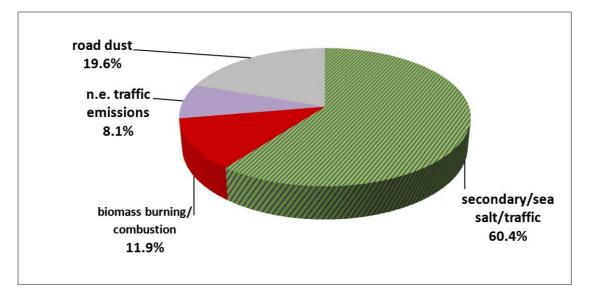
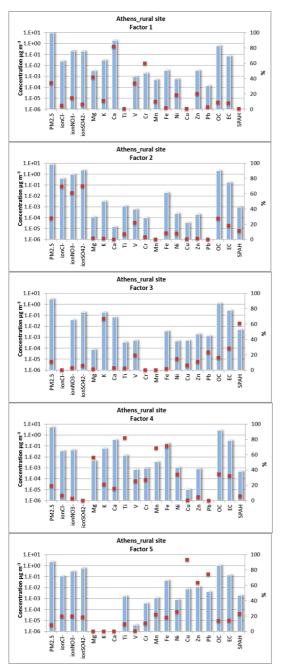



Figure 3.4. % contribution of the four factors/sources to the measured PM2.5 concentration for the urban background site in Athens.

	D3.4 - Report on results of source apportionment in all participating cities				
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU		
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	13/40		

3.3.1.c Athens rural site

PMF resulted in **five sources/groups of sources** for the **rural** site in Athens. Figures 3.5a-e present the factor profiles in μ gm⁻³ and % contribution. Figure 3.6 presents the % contribution of the five factors/sources to the measured PM2.5 concentration.

Figures 3.5a-d. Factor profiles in $\mu g m^{-3}$ and % contribution for the rural site in Athens.

Factor 1 reveals a natural-origin source of mineral dust as it is traced by significant percentages of Ca and Mg. The contribution of this source to the measured PM2.5 levels at the rural site is 19%. It

	D3.4 - Report on results of source apportionment in all participating cities			
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU	
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	14/40	

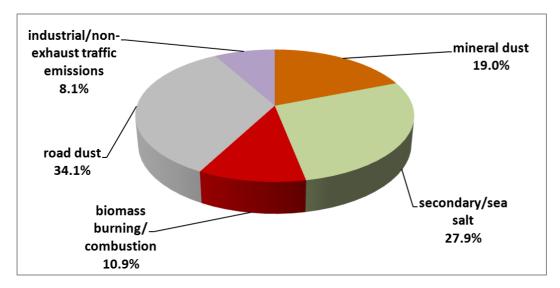
should be noticed that the crustal source appears to be split into two dust-related sources: one of the natural mineral source (Factor 1) and another of road dust (Factor 4).

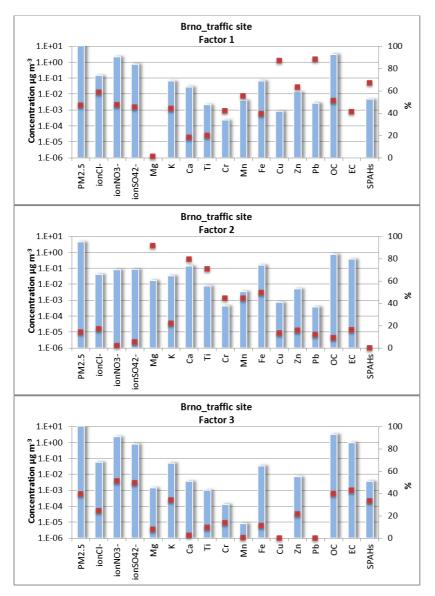
Factor 2 is characterized by high percentages (>50%) of **chloride**, **nitrate** and **sulfate ions** as well as an amount of **organic carbon** (25%). which reveal a **secondary aerosol** source probably mixed with a **sea salt** source. In presence of specific tracers (e.g. ammonium, sodium), this factor would be split into two sources. This factor accounts for the **28%** of the measured PM2.5 at the rural site of Athens.

Factor **3** is strongly associated with **PAHs and K** which are characteristic **biomass burning/combustion** tracers. This factor accounts for the **10.9%** of the measured PM2.5 and can be both related to domestic heating and agricultural activities.

Factor 4 reveals the crustal origin of the source (**Ca, Ti, Mg**) enriched with traffic/industrial emission tracers (**Fe, EC, OC, Mn, Ni**) and therefore is matched to **road dust** (Waked et al., 2014; Lucarelli et al., 2004). This factor contributes for **34.1** % of the measured PM2.5 at the rural site of Athens.

Finally, **Factor 5** is strongly associated with **Cu, Zn, Pb** which are tracers of **industrial emissions** or/and **non-exhaust traffic emissions** (e.g. brake and tire wear, combustion of lubricating oil). This factor contributes the **8.1** % of the measured PM2.5 at the rural site of Athens.




Figure 3.6. % contribution of the five factors/sources to the measured PM2.5 concentration for the rural site in Athens.

	D3.4 - Report on results of source apportionment in all participating cities				
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU		
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	15/40		

3.3.2 PMF results for Brno

3.3.2.a Brno traffic site

PMF resulted in three sources/groups of sources for the traffic site in Brno. Figures 3.7a-c present the factor profiles in μ g m⁻³ and % contribution. Figure 3.8 presents the % contribution of the three factors/sources to the measured PM2.5 concentration.

Figures 3.7a-c. Factor profiles in $\mu g m^{-3}$ and % contribution for the traffic site in Brno.

Factor 1 is strongly associated with **Cu, Zn, Pb, OC, EC, Fe, Mn, K** which are tracers of **exhaust** and **non-exhaust traffic emissions**. The presence of **nitrate** and **sulfate** ions reveals that this factor may also include and **secondary aerosol source.** In presence of specific tracers (e.g. ammonium, sodium), this factor would be split into two sources. This factor accounts for the **46.7%** of the measured PM2.5 at the traffic site of Brno.

	D3.4 - Report on results of source apportionment in all participating cities			
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU	
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	16/40	

Factor 2 reveals the crustal origin of the source (**Ca, Ti, Mg, K, Fe**) and corresponds to **mineral dust**. This factor contributes for **13.9** % of the measured PM2.5 at the traffic site of Brno.

Finally, Factor 3 is associated with PAHs, K, EC and OC which are characteristic biomass burning/combustion tracers. It also includes a part of a secondary aerosol source (nitrate, sulfate). This factor accounts for the quite high percentage of **39.4%** of the measured PM2.5, which is expected during winter time (domestic heating).

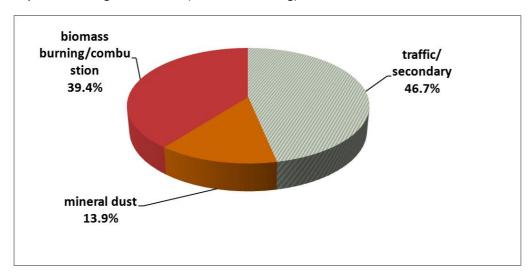
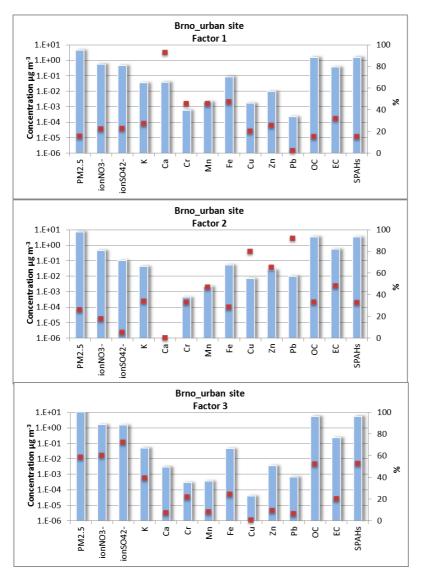



Figure 3.8. % contribution of the three factors/sources to the measured PM2.5 concentration for the traffic site in Brno.

	D3.4 - Report on results of source apportionment in all participating cities			
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU	
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	17/40	

3.3.2.b Brno urban background site

PMF resulted in **three sources/groups of sources** for the **urban** background site in Brno. Figures 3.9ac present the factor profiles in μ g m⁻³ and % contribution. Figure 3.10 presents the % contribution of the three factors/sources to the measured PM2.5 concentration.

Figures 3.9a-c. Factor profiles in $\mu g m^{-3}$ and % contribution for the urban background site in Brno.

Factor 1 reveals the crustal origin of the source (**Ca, Ti, Mg**) enriched with traffic/industrial emission tracers (**Fe, EC, Zn, Cu**) and therefore is matched to **road dust** (Waked et al., 2014; Lucarelli et al., 2004). This factor contributes for **15.6** % of the measured PM2.5 at the urban background site of Brno.

	D3.4 - Report on results of source apportionment in all participating cities				
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU		
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	18/40		

Factor 2 is strongly associated with **Zn**, **Pb**, **OC**, **EC**, **Fe**, **Mn**, **PAHs**, **K** which are tracers of **exhaust** and **non-exhaust traffic emissions**. This factor accounts for the **25.7%** of the measured PM2.5 at the urban background site of Brno.

Finally, Factor 3 is associated with PAHs, K, EC and OC which are characteristic biomass burning/combustion tracers (Amato et al., 2016; Fine et al., 2001). It also includes a part of a secondary aerosol source (nitrate, sulfate). This factor accounts for the quite high percentage of 58.7% of the measured PM2.5, which is expected during winter time (domestic heating).

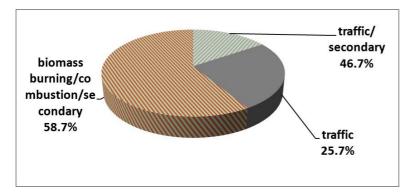
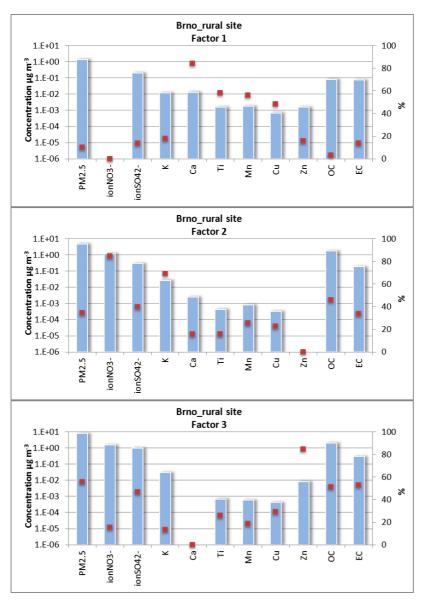



Figure 3.10. % contribution of the three factors/sources to the measured PM2.5 concentration for the urban background site in Brno.

	D3.4 - Report on results of source apportionment in all participating cities		g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	19/40

3.3.2.c Brno rural site

PMF resulted in three sources/groups of sources for the rural site in Brno. Figures 3.11a-c present the factor profiles in μgm^{-3} and % contribution. Figure 3.12 presents the % contribution of the three factors/sources to the measured PM2.5 concentration.

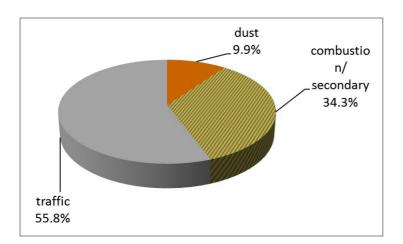
Figures 3.11a-c. Factor profiles in μ g m⁻³ and % contribution for the rural site in Brno.

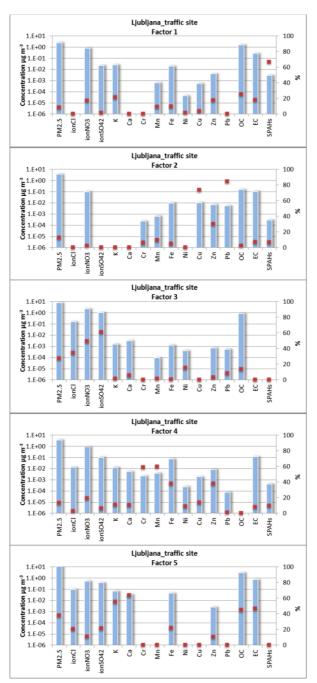
Factor 1 reveals the crustal origin of the source (**Ca**, **Ti**) and corresponds to **mineral dust** combined with industrial emissions (**Mn**, **Cu**). This factor contributes for **9.9%** of the measured PM2.5 at the rural site of Brno.

	D3.4 - Report on results of source apportionment in all participating cities		g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	20/40

Factor 2 is associated with **K**, **EC and OC** which are characteristic **combustion** tracers. It also includes a part of a secondary aerosol source (**nitrate**, **sulfate**). This factor accounts for the **34.3%** of the measured PM2.5.

Factor 3 is strongly associated with **Zn**, **OC**, **EC**, **Cu**, **sulfate** which link to a **traffic-related source** (El Haddad et al., 2009; Amato et al., 2011; Waked et al., 2014). This factor accounts for the **55.8%** of the measured PM2.5 at the rural site of Brno.




Figure 3.12. % contribution of the three factors/sources to the measured PM2.5 concentration for the rural site in Brno.

	D3.4 - Report on results of source apportionment in all participating cities		
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	21/40

3.3.3 PMF results for Ljubljana

3.3.3.a Ljubljana traffic site

PMF resulted in five sources/groups of sources for the traffic site in Ljubljana. Figures 13 a-e present the factor profiles in $\mu g m^{-3}$ and % contribution. Figure 3.14 presents the % contribution of the five factors/sources to the measured PM2.5 concentration.

Figures 3.13a-e. Factor profiles in μ g m⁻³ and % contribution for the traffic site in Ljubljana.

	D3.4 - Report on results of source apportionment in all participating cities		
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	22/40

Factor 1 is strongly associated with **PAHs**, as well as with **K**, **EC** and **OC** which are characteristic **biomass burning/combustion** tracers (Amato et al., 2016; Fine et al., 2001). This factor accounts for **8.6%** of the measured PM2.5.

Factor 2 is strongly associated with **Cu, Zn, Pb** which are tracers of **industrial emissions** or/and **non-exhaust traffic emissions** (e.g. brake and tire wear, combustion of lubricating oil). This factor contributes the **12.6 %** of the measured PM2.5 at the traffic site of Ljubljana.

Factor 3 is characterized by significant percentages of **chloride**, **nitrate** and **sulfate ions** which reveal a **secondary aerosol** source probably mixed with a **sea salt** source. In presence of specific tracers (e.g. ammonium, sodium), this factor would be split into two sources. This factor accounts for the **27.5%** of the measured PM2.5 at the traffic site of Ljubljana.

Factor 4, similarly to factor 2, is related with tracers of **industrial emissions/ fuel oil/ non-exhaust traffic emissions** and accounts for **13.2%** of the measured PM2.5.

Factor 5 reveals the crustal origin of the source (**Ca**, **K**) enriched with traffic tracers (**Fe**, **EC**, **OC**) and therefore is matched to **road dust** (Waked et al., 2014; Lucarelli et al., 2004). This factor contributes for **38.1** % of the measured PM2.5 at the traffic site of Ljubljana.

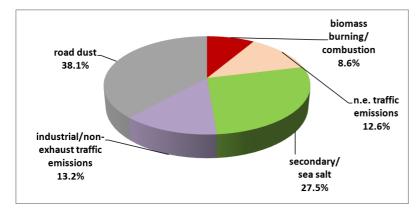
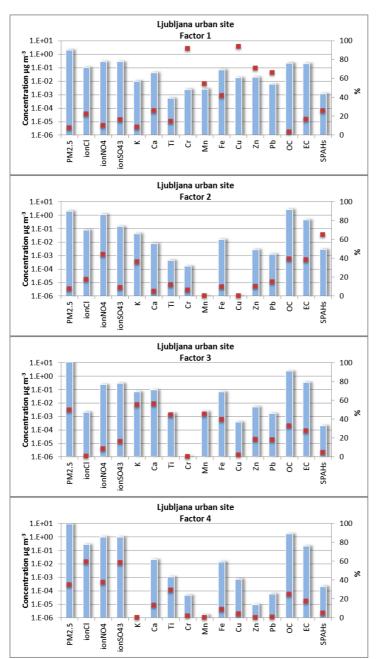



Figure 3.14. % contribution of the five factors/sources to the measured PM2.5 concentration for the traffic site in Ljubljana.

	D3.4 - Report on results of source apportionment in all participating cities		g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	23/40

3.3.3.b Ljubljana background site

PMF resulted in **four sources/groups of sources** for the urban background site in Ljubljana. Figures 3.15a-d present the factor profiles in μg m⁻³ and % contribution. Figure 3.16 presents the % contribution of the four factors/sources to the measured PM2.5 concentration.

Figures 3.15a-d. Factor profiles in μg m⁻³ and % contribution for the urban background site in Ljubljana.

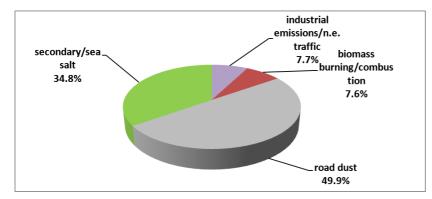
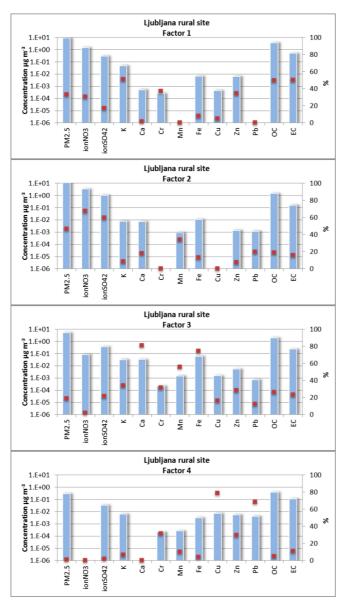
	D3.4 - Report on results of source apportionment in all participating cities		g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	24/40

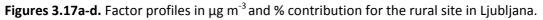
Factor 1 is related with tracers of industrial emissions/ non-exhaust traffic emissions (Cr, Mn, Fe, Cu, Zn, Pb) and accounts for 7.7 % of the measured PM2.5.

Factor 2 is strongly associated with **PAHs**, as well as with **K**, **EC** and **OC** which are characteristic **biomass burning/combustion** tracers. This factor accounts for **7.6%** of the measured PM2.5.

Factor 3 reveals the crustal origin of the source (**Ca**, **K**) enriched with traffic tracers (**Fe**, **EC**, **OC**) and therefore is matched to **road dust** (Waked et al., 2014; Lucarelli et al., 2004). This factor contributes for **49.9%** of the measured PM2.5 at the urban background site of Ljubljana.

Factor 4 is characterized by significant percentages of **chloride**, **nitrate** and **sulfate ions** which reveal a **secondary aerosol** source probably mixed with a **sea salt** source. In presence of specific tracers (e.g. ammonium, sodium), this factor would be split into two sources. This factor accounts for the **34.8%** of the measured PM2.5 at the urban background site of Ljubljana.

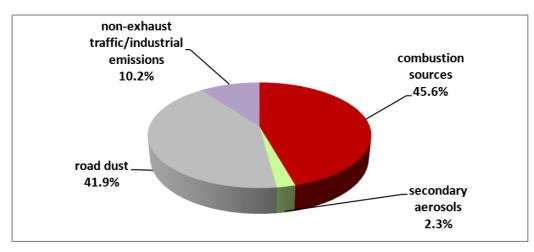




Figure 3.16. % contribution of the four factors/sources to the measured PM2.5 concentration for the urban background site in Ljubljana.

	D3.4 - Report on results of source apportionment in all participating cities		g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	25/40

3.3.3.c Ljubljana rural site

PMF resulted in **four sources/groups of sources** for the **rural** site in Ljubljana. Figures 3.17a-d present the factor profiles in μ g m⁻³ and % contribution. Figure 3.18 presents the % contribution of the four factors/sources to the measured PM2.5 concentration.

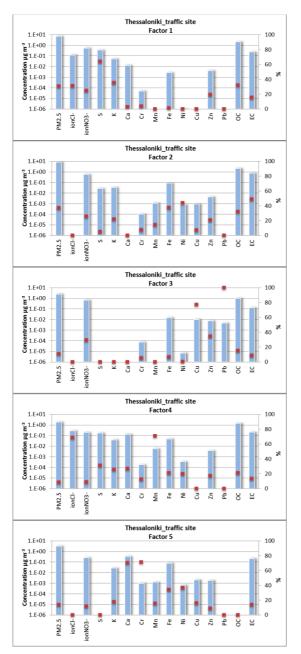

Factor 1 is strongly characterized by significant percentages of **K**, **EC** and **OC** as well as contribution of **Zn** and **Cr**. This factor corresponds to **combustion-related** source or group of sources (including **domestic heating, traffic** and **agricultural activities**) while accounting for **45.6%** of the measured PM2.5.

D3.4 - Report on results of source apportionment in all particip			
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	26/40

Factor 2 is characterized by significant percentages of **nitrate** and **sulfate ions** which reveal a **secondary aerosol** source probably mixed with a **sea salt** source. In presence of specific tracers (e.g. ammonium, sodium), this factor would be split into two sources. This factor accounts for the **2.3%** of the measured PM2.5 at the rural site of Ljubljana.

Factor 3 reveals the crustal origin of the source (**Ca**, **K**, **Mn**) enriched with traffic tracers (**Fe**, **EC**, **OC**) and therefore is matched to **road dust** (Waked et al., 2014; Lucarelli et al., 2004). This factor contributes for **41.9%** of the measured PM2.5 at the rural site of Ljubljana.

Factor 4 is related with tracers of industrial emissions/ non-exhaust traffic emissions (Cr, Cu, Zn, Pb) and accounts for 10.2 % of the measured PM2.5.


Figure 3.18. % contribution of the four factors/sources to the measured PM2.5 concentration for the rural site in Ljubljana.

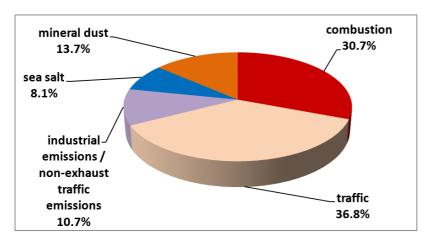
	D3.4 - Report on results of source apportionment in all participating cities		g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	27/40

3.3.4 PMF results for Thessaloniki

3.3.4.a Thessaloniki traffic site

PMF resulted in **five sources/groups of sources** for the traffic site in Thessaloniki. Figures 3.19a-e present the factor profiles in μ g m⁻³ and % contribution. Figure 3.20 presents the % contribution of the five factors/sources to the measured PM2.5 concentration.

Figures 3.19a-e. Factor profiles in μ g m⁻³ and % contribution for the traffic site in Thessaloniki.


	D3.4 - Report on results of source apportionment in all participating cities		g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	28/40

Factor 1 is strongly associated with **S**, **K** and **OC** which are characteristic **combustion** tracers. This factor accounts for the quite high percentage of **30.7%** of the measured PM2.5, which is expected during winter time (domestic heating).

Factor 2 corresponds to **traffic emissions** as it is characterized by EC, OC, Fe, Ni, Zn and nitrate. The ratio of OC/EC is lower than 0.7, which accordingly to previous studies (El Haddad et al., 2009; Amato et al., 2011; Waked et al., 2014) reveals traffic exhausts emissions. Further chemical analysis could possibly indicate that this factor includes shipping emissions from the port of the city. This factor accounts for the quite high percentage of **36.8%** of the measured PM2.5 at the traffic site of Thessaloniki.

Factor 3 is strongly associated with **Cu, Zn, Pb** which are tracers of **industrial emissions o**r/and **non-exhaust traffic emissions** (e.g. brake and tire wear, combustion of lubricating oil). This factor contributes the **10.7 %** of the measured PM2.5 at the traffic site of Thessaloniki.

Factor 4 is characterized by high percentages (>50%) of **chloride** which is one of the **sea salt** tracers. This factor accounts for the **8.1%** of the measured PM2.5 at the traffic site of Thessaloniki.

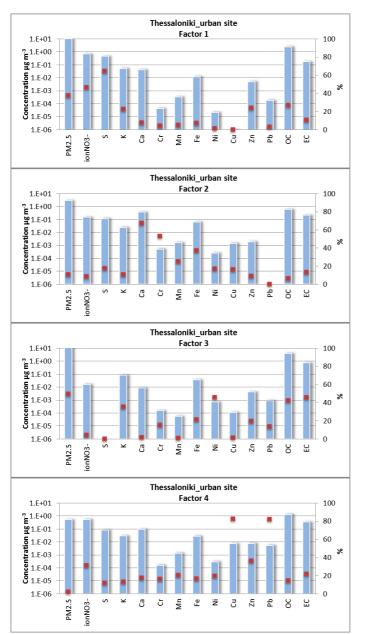

Factor 5 reveals a natural-origin source of mineral dust as it is traced by significant percentages of Ca, K, Fe. The contribution of this source to the measured PM2.5 levels at the traffic site is 13.7%.

Figure 3.20. % contribution of the five factors/sources to the measured PM2.5 concentration for the traffic site of Thessaloniki.

 D3.4 - Report on results of source apportionment in all participating cities		g
WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	29/40

3.3.4.b Thessaloniki background site

PMF resulted in four sources/groups of sources for the urban background site in Thessaloniki. Figures 3.21a-d present the factor profiles in $\mu g m^{-3}$ and % contribution. Figure 3.22 presents the % contribution of the four factors/sources to the measured PM2.5 concentration.

Figures 3.21a-d. Factor profiles in $\mu g \, m^{-3}$ and % contribution for the urban background site in Thessaloniki.

	D3.4 - Report on results of source apportionment in all participating cities		
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	30/40

Factor 1 is characterized by high percentages (>50%) of **nitrate** and **S** as well as an amount of **organic carbon** (27%) which reveal a **secondary aerosol** source. This factor accounts for the **37.7%** of the measured PM2.5 at the urban background site of Thessaloniki.

Factor 2 reveals a natural-origin source of mineral dust as it is traced by significant percentages of Ca and Fe. The contribution of this source to the measured PM2.5 levels at is 10.8%.

Factor 3 is strongly characterized by significant percentages of **K**, **EC** and **OC** as well as contribution of **Ni**. This factor corresponds to **combustion-related** source or group of sources (including **domestic heating, traffic** and **agricultural activities**) while accounting for **49.6**% of the measured PM2.5.

Factor 4 is associated with **Cu**, **Zn**, **Pb** which are tracers of **industrial emissions o**r/and **non-exhaust traffic emissions** (e.g. brake and tire wear, combustion of lubricating oil). This factor's contribution is underestimated (**1.9 %**) probably because traffic-source has been presented also in Factor 3.

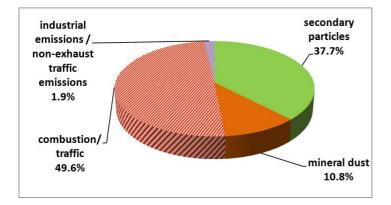
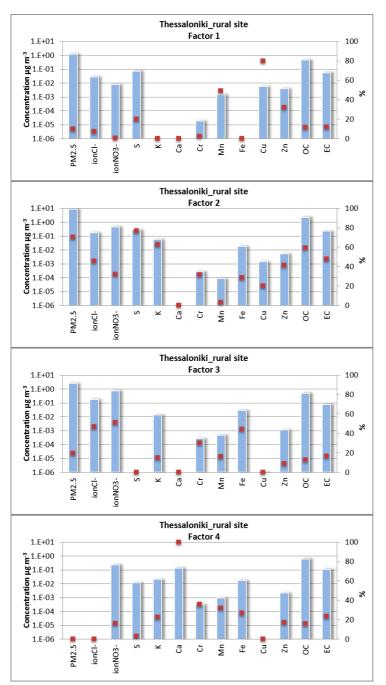



Figure 3.22. % contribution of the four factors/sources to the measured PM2.5 concentration for the urban background site of Thessaloniki.

	D3.4 - Report on results of source apportionm cities	ent in all participatin	g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	31/40

3.3.4.c Thessaloniki rural site

PMF resulted in four sources/groups of sources for the rural site in Thessaloniki. Figures 3.23a-d present the factor profiles in μ g m⁻³ and % contribution. Figure 3.24 presents the % contribution of the four factors/sources to the measured PM2.5 concentration.

Figures 3.23a-d. Factor profiles in $\mu g m^{-3}$ and % contribution for the rural site in Thessaloniki.

	D3.4 - Report on results of source apportionm cities	ent in all participatin	g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	32/40

Factor 1 is associated with **Cu, Zn, Mn** which are tracers of **industrial emissions o**r/and **non-exhaust traffic emissions** (e.g. brake and tire wear, combustion of lubricating oil). This factor's contribution to PM2.5 concentration is **11 %**.

Factor 2 is strongly characterized by significant percentages of **K**, **EC** and **OC** as well as contribution of **S**. This factor corresponds to **combustion-related** source or group of sources (including **domestic heating, traffic** and **agricultural activities**) while accounting for **52.9%** of the measured PM2.5.

Factor 3 is characterized by high percentages (>50%) of **chloride** and **nitrate** which reveal a **secondary aerosol** source probably mixed with a **sea salt** source. In presence of specific tracers (e.g. ammonium, sodium), this factor would be split into two sources. This factor accounts for the **28.8%** of the measured PM2.5 at the rural site of Thessaloniki.

Factor 4 reveals a natural-origin source of mineral dust as it is traced by significant percentages of Ca, K and Fe. The contribution of this source to the measured PM2.5 levels at is 7.4%.

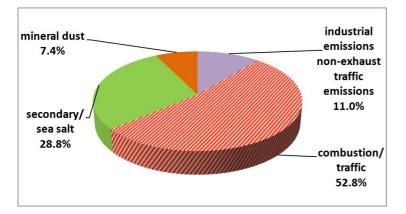


Figure 3.24. % contribution of the four factors/sources to the measured PM2.5 concentration for the rural site of Thessaloniki.

	D3.4 - Report on results of source apportionmodiates	ent in all participatin	g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	33/40

3.3.5 Overview of PMF results

A well-known weakness of PMF is that it is not always a direct tool to distinguish individual sources, as the user has to distinguish between factors explaining emission sources, in which tracers sharing emission sources are grouped, and factors explaining formation/transformation processes (e.g. secondary nitrates and sulfates). In cases of concurrent emissions from different sources, the analysis can be rather complicated as the obtained factors represent combined sources or atmospheric processes rather than single emission sources.

An overview of the percentages of each source contribution to the measured PM2.5, as derived from PMF is presented in Table 3.2. Mixed sources (e.g. traffic non-exhaust and/or industrial emissions) are noticed with an asterisk. In most cases, secondary particles and sea salt sources were not distinguished. In presence of specific tracers (e.g. ammonium, sodium), this mixed source would be split into two sources. Similarly in a number of cases, the combustion-related source seems to include also traffic source, presenting quite high percentages.

	source:	traffic non-exhaust	traffic exhaust	secondary particles	sea salt	mineral/crustal/dust	road dust	industrial /fuel oil	biomass burning/ combustion
city:	sampling site:								
S	traffic	11.4%*		24.5	%	4.8%	28.8%	*	30.5%
Athens	urban background	8.1% *		60.2	%		19.5%	*	11.9%
Atl	rural	8.1%*		28.09	%	19.0%	34.1%	*	10.9%
	traffic	46.7	7%*	*/**		13.9%			39.4%**
٥	urban background	25.	7%	*		15.6%			58.7%*
Brno	rural	55.	8%	*		9.9%			34.3%*
la	traffic	12.6%	*	27.5	%		38.1%	13.2%	8.6%
ljan	urban background	7.7%*	*	34.89	%		49.9%	*	7.6%
Ljubljana	rural	10.2%*	*	2.3%			41.9%	*	45.6%*
iki	traffic	*	36.8%		8.1%		13.7%	10.7%*	30.7%
Thessaloniki	urban background	1.9%**	*	37.7%		10.8%		**	49.6%*
Thes	rural	*	*	28.8	%	7.4%		11.0%	52.9%*

Table 3.2. PMF % contribution of each source.

	D3.4 - Report on results of source apportionme cities	ent in all participatin	g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	34/40

4 Principal Component Analysis (PCA)

4.1 PCA application

The Principal Component Analysis (PCA) on the PM2.5 chemical analysis data was performed using the IBM SPSS 24.0 statistical software package (IBM, Armonk, NY, USA). The PCA transforms the set of intercorrelated variables into a set of independent uncorrelated variables, called principal components (PCs), which are linear combinations of the original variables. The first PC is the linear combination of PM species concentrations with maximal variance and explains or accounts for the maximum amount of the variability of the original variables. The second PC is the linear combination (uncorrelated with the first PC) that represents the next largest variability not already accounted for by the first PC. The third, fourth, etc., PCs are defined similarly. The eigenvectors of the correlation matrix must be linearly combined to form the source vectors. Typically, this is conducted by applying the "VARIMAX" rotation method, retaining PCs whose eigenvalues are larger than 1. The relationship between the PC (hereafter called "factor") and the compound is indicated by the factor loadings and is related to the source emissions composition. The factor loadings are the coefficients of Pearson's correlation between the hypothetical sources and the compound in question. A loading close to (+1) indicates that the pollutant is highly and positively correlated with the source vector. On the contrary, a loading close to (-1) indicates that the pollutant is highly and negatively correlated with the source category. Absolute coefficients less than 0.60 have been omitted from the tables to provide a clearer picture of the groups of variables characterizing the single factors or sources. By critically evaluating the factor loadings, through a combined literature survey, an estimate of the main source responsible for each factor can be made.

In the present PCA analysis, the PMF input data bases were used. The same data pre-treatment was followed.

4.2 PCA results

Tables 4.1-4.4 present the results of the PCA (Varimax rotation) for PM2.5 chemical components for the three sites (traffic, urban background, rural) of **Athens, Brno, Ljubljana,** and **Thessaloniki**. The coefficients between factors and chemical species concentrations are reported. The % cumulative rotation sums of squared loadings varied between 65.3% and 94.5% and the number of components between 2 and 4.

	D3.4 - Report on results of source apportionme cities	ent in all participatin	g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	35/40

Table 4.1. PCA results for Athens (traffic, urban background, rural site).

	Ather	Athens_traffic site	<i>c</i> .			Athens_ui	Athens_urban background site	d site			Athens_rural site	rural site		
		Compone	Components (Factors):	5):			Compone	Components (Factors):			-	Components (Factors):	ts (Factors)	
Compounds:	1	2	m	4	Compounds:	1	2	m	4	Compounds:	-	2	m	4
ы	0.940				Fe	0.924				Mn	0.933			
SPAH	0.921				Ca	0.900				Fe	0.929			
ionNO3-	0.801				×	0.577			0.423	Mg	0.921			
×	0.796	0.360			SC		0.926			Ħ	0.900			
ionSO42-	0.670				EC		0.805			c	0.849	0.328		
zn	0.622	0.362	0.499		ionSO42-		0.697			Ca	0.786	0.462		
ionCl-	0.416			-0.363	Pb			0.928		>	0.608	0.333		0.384
μ		0.946			C			0.876		00	0.470	0.812		
Ca		0.943			SPAH	-0.437		-0.442		EC	0.434	0.806		
Fe		0.929			ionCl-				0.836	SPAH		0.771		
Mn		0.857	0.365		ionNO3-				0.647	×		0.753		
EC	0.581	0.655								ionNO3-		0.571		0.535
Cu			0.878							cr			0.913	
Pb			0.873							Zn		0.309	0.871	
ï				0.906						Pb			0.808	
ა		0.499		0.692						N	0.422		0.566	
										ionCl-				0.873
										ionSO42-		0.437		0.649
source:	biomass burning/com bustion/seco ndary	road dust	non- exhaust traffic	industrial/fuel oil combustion	source:	mineral dust	traffic combustion	non-exhaust traffic	secondary particles/ sea salt	source:	mineral dust	biomass burning /combust ion	non- exhaust traffic	secondary particles /sea salt
Rotation Sums of Squared Loadings					Rotation Sums of Squared Loadings					Rotation Sums of Squared Loadings				
% of variance	27.8%	27.6%	12.9%	11.3%	% of variance	21.2%	19.6%	17.3%	12.7%	% of variance	32.9%	20.0%	16.1%	10.5%
Cumulative %	27.8%	55.5%	68.4%	79.6%	Cumulative %	21.2%	40.7%	58.0%	70.7%	Cumulative %	32.9%	52.9%	69.0%	79.5%
Extraction method: principal component analysis. Rotation method: Varim. with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 206 listed. Only factors with eigenvalue 21 are shown	rrincipal compor ation. Rotation c Only factors with	nent analysis. converged in s 'n eigenvalue ≥	. Rotation met six iterations. ≥1 are shown	Rotation method: Varimax six iterations. Only factor 21 are shown	Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue ±1 are shown	icipal compc otation conv with eigenv	nnent analysis. R erged in six itera alue ≥1 are shov	station method: tions. Only factu n	Varimax with or loadings	Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown	icipal compo rmalization. I 6 listed. Only	nent analysi Rotation cor y factors wit	s. Rotation iverged in s h eigenvalu	method: x iterations. e ≥1 are

	D3.4 - Report on results of source apportionm cities	ent in all participatin	g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	36/40

Table 4.2. PCA results for Brno (traffic, urban background, rural site).

	Brno_t	Brno_traffic site			Brno_urbar	Brno_urban background site	site	Brr	Brno_rural site	
	0	omponer	Components (Factors):			Components (Factors):	s (Factors):		Components (Factors):	ts (Factors):
Compounds:	1	7	m	4	Compounds:	1	2	Compounds:	1	2
SPAH	0.931				ionSO42-	0.935		oc	0.966	
Pb	0.914				SPAHs	0.888	0.382	Х	0.958	
Х	0.882				oc	0.888	0.382	EC	0.915	
S	0.882		0.352		Pb	0.861		ionNO3-	0.887	
Zn	0.866		0.305	0.302	×	0.851	0.372	Zn	0.887	
Mn	0.724	0.604			Zn	0.839	0.498	Fe	0.858	
Ca		0.987			ionNO3-	0.724	0.313	ionSO42-	0.847	-0.322
ц		0.969			Mn	0.680	0.586	Cu	0.581	
Mg		0.936			ionCl-	0.672	0.476	Ca		0.909
Fe	0.402	0.851			Cu	0.582	0.521	F	0.489	0.702
ŗ	0.375	0.809			Ca		0.890	SPAH	0.423	0.477
ionNO3-			0.975		Fe	0.497	0.840	Mn	0.451	0.538
ionSO42-	0.381		0.899		EC	0.365	0.750			
ionCl-	0.378		0.895		ŗ	0.363	0.730			
EC				0.945						
Cu	0.420	0.362		0.727						
source:	combustion /traffic I	road dust	secondary particles /sea salt	traffic II	source:	combustion/ traffic/ secondary	road dust	source:	combustion/ traffic/ secondary	mineral dust
Rotation Sums of Squared Loadings					Rotation Sums of Squared Loadings			Rotation Sums of Squared Loadings		
% of variance	34.2%	30.1%	18.7%	11.5%	% of variance	49.4%	30.5%	% of variance	55.6%	18.2%
Cumulative %	34.2%	64.3%	83.0%	94.5%	Cumulative %	49.4%	79.9%	Cumulative %	55.6%	73.8%
Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings ≥0.6 listed. Only factors with eigenvalue ≥1 are shown	orincipal comp normalization or loadings ≥0 own	oonent and 1. Rotation .6 listed. O	alysis. Rotatior converged in nly factors wil	r method: six th	Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown	: principal com nethod: Varim n. Rotation co factor loading: with eigenvalu	ponent iax with inverged in s ≥0.6 Le ≥1 are	Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings ≥0.6 listed. Only factors with eigenvalue ≥1 are shown	principal compc arimax with Kait tion converged i or loadings ≥0.6 Lue ≥1 are show	nent analysis. ser n six listed. Only n

	D3.4 - Report on results of source apportionme cities	ent in all participatin	g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	37/40

Table 4.3. PCA results for Ljubljana (traffic, urban background, rural site).

Cmonometal Component (factor):		Ljublja	Ljubljana_traffic site			Ljublj	Ljubljana_urban background site	site			Ljublja	Ljubljana_rural site	
unds: 1 2 3 Compounds: 1 2 3 4 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.40 9 0.40 <th></th> <th>J</th> <th>Components (Factors):</th> <th>_</th> <th></th> <th></th> <th>Components (F</th> <th>Factors):</th> <th></th> <th></th> <th></th> <th>Components (Factors):</th> <th></th>		J	Components (Factors):	_			Components (F	Factors):				Components (Factors):	
0.941 0.941 0.93 0.91 0.91 0.91 0.93 0.91 0.91 0.93 0.91 0.91 0.91 0.93	Compounds:	1	2	œ	Compounds:	1	2	œ	4	Compounds:	1	2	œ
	EC	0.941			Pb	0.91				х	0.909		
	S	0.935			Zn	0.89				SC	0.896		
	Х	0.880			Cu	0.89				EC	0.854	0.368	
0.7730.7730.7730.0400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.440.530.440.530.440.530.440.530.440.530.440.530.440.530.440.530.440.530.440.530.440.530.440.530.440.530.440.530.440.530.440.530.530.440.530.530.440.530.530.440.530.73<	Ca	0.797			ionCl	0.78				Ca	0.813		
0.755 0.756 0.37 0.37 0.37 0.33	SPAHs	0.773			SC	0.78		0.40		Fe	0.757	0.409	0.319
	Pb	0.755			SPAHs	0.75	0.37			Cu		0.923	
Image: bot of the constraint of	C	0.695	0.447		EC	0.72		0.53		Zn	0.562	0.754	
10.9410.9410.9410.9410.9410.9440.9440.94410.0460.032510.03210.0320.440.780.7820320.0570.03320.3330.3330.3430.36970.570.370.782030.04690.6970.6970.6970.670.670.780.782030.04690.6970.6970.670.670.780.782030.5990.6970.6970.6770.780.7820410.7960.6760.6760.780.782050.6760.6970.6700.6770.780.7820411111112041111111204111111120411111112041111111204111111120422223333204111111120422223333204222233332042222333320422<	ŗ		0.990		Mn		0.94			Pb		0.692	0.494
integrationintegrati	Fe		0.941		ŗ		0.94			c		0.553	-0.423
0.4060.4020.832Tr0.430.430.330.330.33SO420.540.540.6370.6370.6370.630.710.71NO310.540.6670.6670.6670.670.570.770.73NO310.0540.6670.6670.6670.670.790.770.79NO3110.5460.6670.6670.6670.670.790.79NO3111111111111NO31111111111111No111	Mn		0.925		Fe	0.34	0.80	0.44		ionNO3			0.882
K832 Ca 0.48 0.71 0.71 1697 K 0.57 0.67 0.79 1697 K 0.57 0.67 0.79 1697 ionN04 0.57 0.79 0.79 1697 ionS043 0.32 0.79 1697 insod3 0.32 0.79 1697 information 0.32 0.79 1698 information 0.32 0.79 17 information industrial/fueloii information 17 % of variance 36.4% 56.3% 72.4% 17 Mineral dust 10.2% 10 Source: 36.4% 55.3% 72.4% 10 cumulative % 36.4% 55.3% 72.4%	Zn	0.406	0.852		Έ			0.83		ionSO42			0.856
(697 K 0.67 0.67 0.67 0.79 0.630 ionN04 0.57 0.79 0.79 0.61 ionS043 0.32 0.79 0ndary traffic (non-exhaust) inneral dust 0.32 0.77 0ndary source: traffic (non-exhaust) mineral dust secondary rticles traffic (non-exhaust) mineral dust secondary source: traffic (non-exhaust) mineral dust secondary source: combustion //industrial/fuel oil mineral dust secondary source: combustion //industrial/fuel oil mineral dust secondary source: traffic (non-exhaust) mineral dust secondary source: combustion //industrial/fuel oil mineral dust source: combustion //industrial/fuel oil mineral dust secondary secondary secondary secondary source: source: 36.4% 55.3% 17.1% secondary sci siskis: Rotation. Sony factor loadings 20.6 listed. Only factors secondary with eigenvalue 21 are shown sk terations. Only factor loadings 20.6 listed. Only factors	ion SO42			0.832	Ca	0.48		0.71		Mn	0.304	0.460	0.658
0.630 ionNO4 0.32 0.73 ionSO43 0.33 0.73 0.77 ionSO43 traffic / ione-schaust) inacrel dust secondary ondary source: traffic / industrial / fuel oil mineral dust secondary rticles combustion /industrial / fuel oil mineral dust secondary Rotation Sums of secondary /industrial / fuel oil mineral dust secondary Squared Loadings 36.4% 18.9% 17.1% 10.2% Straction nethod secondarys 36.4% 55.3% 72.4% 82.6% ethod: Extraction method sprincipal component analysis. Rotation method: Varimax with Kater ion method scription. Converged in sk iterations. Only factor loadings 20.6 listed. Only factors inth eigenvalue schown	ion NO3		0.549	0.697	×	0.57		0.67					
ion5043 0.32 0.77 ondary tricles source: traffic / combustion traffic / /industrial/fuel oil 0.32 0.77 Ansatz traffic / combustion traffic / /industrial/fuel oil mineral dust secondary particles Rotation Sums of Squared Loadings 36.4% 78.9% 17.1% 102% & % of variance 36.4% 55.3% 72.4% 82.6% ethod: Extraction method: principal component analysis. Rotation method: Varimax with Kalser normalization. Rotation converged in ski trerations. Only factor loadings 20.6 listed. Only factors only factors	ïz		0.469	-0.630	ionNO4				0.79				
ondary ondary source: traffic / traffic (non-exhaust) traffic (non-exhaust) secondary mineral dust secondary source: combustion /industrial/fuel oil mineral dust Rotation Sums of Squared Loadings secondary 2.7% % of variance 36.4% 18.9% 5.7% % of variance 36.4% 10.2% comulative % 36.4% 56.3% 72.4% ethod: Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown					ionSO43			0.32	0.77				
ondary tricles traffic / source: traffic / traffic (non-exhaust) mineral dust secondary particles ricles /industrial/fuel oil mineral dust secondary particles Rotation Sums of Squared Loadings /industrial/fuel oil mineral dust secondary particles 2.7% % of variance 36.4% 18.9% 17.1% 10.2% 8.8% Cumulative % 36.4% 55.3% 72.4% 82.6% ethod: Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in ski treations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown													
ondary tricles traffic (non-exhaust) combustion traffic (non-exhaust) /industrial/fuel oil mineral dust secondary particles Rotation Sums of Squared Loadings combustion /industrial/fuel oil mineral dust secondary particles 2.7% % of variance 36.4% 16.9% 17.1% 10.2% 8.8% Cumulative % 36.4% 56.3% 72.4% 82.6% ethod: Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown siterations. Only factor loadings 20.6 listed. Only factors													
ondary tricles traffic / source: traffic / traffic / / / traffic / / traffic / / secondary / ricles combustion // // // secondary Rotation Sums of Squared Loadings // // // secondary State 36.4% // 18.9% 17.1% 10.2% State 36.4% 56.3% 72.4% 82.6% ethod: Extraction method: principal component analysis. Rotation method: Varimax with Kater normalization. Rotation converged in sk iterations. Only factor loadings 20.6 listed. Only factors													
Rotation Sums of Squared Loadings Rectation Sums of Squared Loadings 18.9% 17.1% 10.2% 2.7% % of variance 36.4% 78.9% 72.4% 82.6% 0.6% Cumulative % 36.4% 55.3% 72.4% 82.6% ethod: Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown	source:	traffic / combustion	traffic (non-exhaust) /industrial/ fuel oil	secondary particles	source:	traffic / combustion	traffic (non-exhaust) /industrial/ fuel oil	mineral dust	secondary particles	source:	traffic/ road dust	traffic (non-exhaust) /industrial/ fuel oil	secondary particles
Rotation Sums of Squared Loadings Rotation Sums of Squared Loadings 18.9% 17.1% 10.2% 2.7% % of variance 36.4% 78.9% 72.4% 82.6% 0.6% Cumulative % 36.4% 55.3% 72.4% 82.6% cthod: Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown													
Retation Sums of Squared Loadings Retation Sums of Squared Loadings 10.2% 10.2% 2.7% % of variance 36.4% 16.9% 17.1% 10.2% 0.8% Cumulative % 36.4% 55.3% 72.4% 82.6% ethod: Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown	Rotation									Potation Sume of			
Squared Loadings 36.4% 18.9% 17.1% 10.2% 2.7% % of variance 36.4% 18.9% 17.1% 10.2% 0.8% Cumulative % 36.4% 55.3% 72.4% 82.6% ethod: Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown	Sums of				Rotation Sums of					Saliared			
2.7% % of variance 36.4% 16.9% 17.1% 10.2% 0.8% Cumulative % 36.4% 55.3% 72.4% 82.6% ethod: Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown	Squared				Squared Loadings					Loadings			
0.8% Cumulative % 36.4% 55.3% 72.4% 82.6% ethod: Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown 82.6%	% of variance	36.7%	31.4%	12.7%	% of variance	36.4%	18.9%	17.1%	10.2%	% of variance	34.5%	23.4%	22.0%
ethod: Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown	Cumulative %	36.7%	68.1%	80.8%	Cumulative %	36.4%	55.3%	72.4%	82.6%	Cumulative %	34.5%	57.9%	79.9%
	Extraction meth Varimax with Ka iterations. Only [†] eigenvalue ≥1 ar	od: principal cc iser normalizat factor loadings e shown	mponent analysis. Rotati ∷ion. Rotation converged i ≥0.6 listed. Only factors ·	ion method: in six with	Extraction method: pr normalization. Rotatic with eigenvalue ≥1 arr	rincipal compon on converged in e shown	ent analysis. Rotation met six iterations. Only factor	:hod: Varimax with K loadings ≥0.6 listed.	aiser Only factors	Extraction method: Varimax with Kaise Only factor loading shown	principal con r normalizatic s ≥0.6 listed.	nponent analysis. Rotatior on. Rotation converged in Only factors with eigenval	n method: six iterations. ue ≥1 are

	D3.4 - Report on results of source apportionme cities	ent in all participatin	g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	38/40

Table 4.4. PCA results for Thessaloniki (traffic, urban background, rural site).

	Thessaloniki_traffic site	traffic site		ΨĻ	essaloniki_t	Thessaloniki_urban background site	ite		Thessalon	Thessaloniki_rural site	
	Con	Components (Factors)	ä			Components (Factors):	ctors):		J	Components (Factors):	ors):
Compounds:	1	2	3	Compounds:	H	2	3	Compounds:	1	2	œ
Fe	0.947			S	0.819	0.423		×	0.910		
Ni	0.929			Pb	0.807			EC	0.797	0.321	
Mn	0.904			К	0.794	0.505		8	0.787	0.402	
cr	0.892			EC	0.758	0.533		Ca	0.766		
Х	0.875			Cu	0.751	0.367		Pb		0.892	
Zn	0.851	0.406		Zn	0.725	0.557		Cu		0.788	
Ca	0.840			NO3	0.674		0.374	Zn	0.633	0.654	
EC	0.839			Ca		0.963		S04		0.478	
S	0.765			Fe		0.944		Fe	0.369		0.837
NO3	0.715			ç		0.920		NO3			0.743
C		0.892		Mn	0.387	0.774		č	0.492		0.719
Pb		0.777		Ni	0.599	0.600		Mn		0.427	0.528
cu	0.659	0.703		SO4	0.421		0.773	CI			0.686
S04			0.953	G	0.349		-0.717				
source:	road dust / traffic / combustion	traffic	secondary particles	source:	traffic / combusti on	road dust	secondary/sea salt	source:	road dust / traffic / combustion	traffic	secondary nitrates/sea salt
Rotation Sums of Squared Loadings				Rotation Sums of Squared Loadings				Rotation Sums of Squared Loadings			
% of variance	56.1%	16.4%	8.1%	% of variance	35.6%	34.5%	9.9%	% of variance	27.9%	20.0%	17.4%
Cumulative %	56.1%	72.5%	80.6%	Cumulative %	35.6%	70.1%	80.0%	Cumulative %	27.9%	47.9%	65.3%
Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown	principal compo normalization. F or loadings ≥0.6 own	nent analysis. Rota Rotation converged listed. Only factors	tion method: in six with	Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown	rincipal com ormalizatior .0.6 listed. O	ponent analysis. Rota 1. Rotation convergec inly factors with eigen	tion method: l in six iterations. value ≥1 are shown	Extraction method: principal component analysis. Rotation method: Varim with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown	principal compon ation. Rotation c Only factors with	ient analysis. Rotati onverged in six iter: ı eigenvalue ≥1 are :	Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation converged in six iterations. Only factor loadings 20.6 listed. Only factors with eigenvalue 21 are shown

	D3.4 - Report on results of source apportionmodiates	ent in all participatin	g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	39/40

5 Conclusions

The scope of the present report is to present the results from the source apportionment methods application on PM2.5 data collected in four European cities (Athens, Brno, Ljubljana and Thessaloniki) in the frame of ICARUS project. PM2.5 chemical composition data were inserted in PMF (Positive Matrix Factorization) and PCA (Principal Component Analysis) models with the scope of identifying the main groups of sources and estimating their contribution to PM2.5 concentrations.

Depending on the case, the PMF model resulted in a number of three, four or five identified PM2.5 sources/group of sources for each site/city. In most cases, secondary particles and sea salt sources were not distinguished. In presence of specific tracers (e.g. ammonium, sodium), this mixed source would be split into two sources. Similarly in a number of cases, the combustion-related source seems to include also traffic source, presenting quite high percentages. Traffic is presented in three different source-categories: exhaust-traffic, non-exhaust traffic and road dust. Significant variability is observed on the percentages of each source among the sites of the same city. Although significantly varying among the sites of each city, biomass burning/combustion source is aggravated during wintertime due to the domestic heating. Finally, when identified as a separate source, the natural source of crustal dust presented percentages between 5 and 20%. In the other cases, this source was identified as road dust (combined with non-exhaust traffic emissions).

The PCA model resulted in a lower number of components/factors (2-4). Most of them comprise combination of two or three sources (e.g. combustion-related group of sources). The % percentage cumulative rotation sums of squared loadings in PCA varied between 65.3% and 94.5%, which means that these percentages of PM2.5 variation were explained by the model.

	D3.4 - Report on results of source apportionmo	ent in all participatin	g
ICARUS	WP3 : Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	PU
	Author(s): D. Saraga, Th. Maggos	Version: Final 1 st	40/40

6 References

Amato, F., Pandolfi, M., Moreno, T., (...), Baltensperger, U., Querol, X. (2009) Sources and variability of inhalable road dust particles in three European cities. Atmospheric Environment 45(37), 2011, 6777-6787.

Amato, F., Alastuey, A., Karanasiou, A., (...), Harrison, R.M., Querol, X. (2016) AIRUSE-LIFE+: A harmonized PM speciation and source apportionment in five southern European cities. Atmospheric Chemistry and Physics 16(5), pp. 3289-3309.

Belis C.A., B. Larsen, F. Amato, I. El. Haddad, O. Favez, R.M. Harrison, P.K. Hopke, S. Nava, P. Paatero, A. Prévot, U. Quass, R. Vecchi, M. Viana European Guide on Air Pollution Source Apportionment with Receptor Models. Publication Office of the European Union, Italy (2014),

EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide

Fine, P.M., Cass, G.R., Simoneit, B.R.T., (2001) Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in the northeastern United States. Environmental Science and Technology 35, 2665–2675

El Haddad, I., Marchand, N., Wortham, H., Piot, C., Besombes, J. L., Cozic, J., Chauvel, C., Armengaud, A., Robin, D., and Jaffrezo, J. L. (2011) Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille, Atmos. Chem. Phys., 11, 2039-2058.

Lucarelli, F., Mandò, P. A., Nava, S., Prati, P., and Zucchiatti, A. (2004) One-Year Study of the Elemental Composition and Source Apportionment of PM10 Aerosols in Florence, Italy, JAPCA J. Air Waste Ma., 54, 1372–1382.

Paatero, P. and Hopke, P.K., (2009) Rotational Tools for Factor Analytic Models, Journal of Chemometrics 23 91–100 Paatero, P., Tappert, U., 1994. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates odd data values. Environmetrics 5, 111–126.

Polissar A.V., Hopke P.K., Poirot R.L., (2001) Atmospheric aerosol over Vermont: chemical composition and sources. Environ. Sci. Technol. 35 (23), 4604=4621.

Saraga D., Makrogkika, A., Karavoltsos, S, Sakellari, A., Diapouli, E., Eleftheriadis, K., Vasilakos, C., Helmis C., and Maggos Th. (2015) A pilot investigation of PM indoor/outdoor mass concentration and chemical analysis during a period of extensive fireplace use in Athens. Aerosol and Air Quality Research: 15, 7, pp 2485-2495.

Sarigiannis D., Karakitsios S., Kermenidou M., Nikolakaki S., Zikopoulos D., Semelidis S., Papagiannakis A., Tzimou R., (2014) Total exposure to airborne particulate matter in cities: The effect of biomass combustion. Science of The Total Environment 493, 795-805.

Waked, A., Favez, O., Alleman, L.Y., (...), Jaffrezo, J.-L., Leoz-Garziandia, E. (2014) Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions. Atmospheric Chemistry and Physics 14(7), 3325-3346