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Executive summary 
Aim: An approach was developed to identify sources of air pollutants by evaluating PM and 

PAH measurements in the ambient air at three different types of measurement sites: traffic 

sites, urban and rural background sites. Different approaches are available which require 

more or less detailed input data into the source apportionment model. With the help of the 

Lenschow approach, the PMF (positive matrix factorization) and the PCA (principal 

component analysis) approach shall be applied in the six cities. 

Details of progress: The PM and PAH measurements are carried out during two 

measurement periods. One in winter 2017 and the other in summer 2017. The expected 

difference of the results are in lower concentrations in summer time and less contribution of 

sources caused by combustion for heating purposes.  

Main results: Results available up to now is the approach that will be applied. Further, apart 

from the PM and PAH analysis for the 6 participating cities (Athens, Thessaloniki, Madrid, 

Stuttgart, Ljubljana, Brno) are available yet. After the complete data set will be available, the 

above mentioned approaches will be applied on the data set in order to identify the sources 

causes the PM and PAH air pollution at the different measurement sites. 
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List of abbreviations 

CMB Chemical Mass Balance 

GHG Greenhouse gases 

LA Lenschow Approach 

PCA Principal Component Analysis 
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1 Main objectives 

The main objective in WP 3.2 is the development of an approach to link changes in emissions 

of local sources, like traffic, industries, caused by ICARUS policy/measures to concentrations 

using source apportionment techniques for the six participating cities, which means Athens 

(Greece), Brno (Czech Republic), Ljubljana (Slovenia), Madrid (Spain), Stuttgart (Germany) 

and Thessaloniki (Greece). There are many different source apportionment (SA) techniques 

available, varying by their requirements and the output. The most well-known approaches 

are the Lenschow Approach (LA), the mass closure method, a tracer based approach and 

receptor models like the Positive Matrix Factorization (PMF), the Principal Component 

Analysis (PCA) and the Chemical Mass Balance (CMB). To apply these methods, there is much 

data needed, which can be extracted on the one hand from the public measurement stations 

in the cities. On the other hand, data gaps can be filled by field campaigns during winter and 

summer periods, so that a whole year will have been climatically well covered. The 

necessary data could also be taken from airborne/satellite and other remote sensing 

sources. These results can be used to predict the ground level concentrations of all 

pollutants and GHG’s after implementing the ICARUS policies. 

Based on the results a friendly user guidance tool to authorities will be developed. This 

guidance tool will include recommendations on the application of SA for the assessment of 

the effectiveness of abatement measures/policies of air quality and CFP. 
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2 Introduction 

The main purpose or aim of the Source apportionment (SA) models is to reconstruct the 

impacts of emissions from different sources of atmospheric pollutants [1]. There are three 

main groups of SA techniques:  

(a) Methods based on the evaluation of monitoring data. Basic numerical data treatment is 

used to identify sources [1].  

(b) Methods based on emission inventories and/or dispersion models to simulate aerosol 

emission, formation, transport and deposition. These models require detailed emission 

inventories [1].  

(c) Methods based on the statistical evaluation of PM chemical data acquired at receptor 

sites (receptor models). The fundamental principle of receptor modelling is that mass and 

species conservation can be assumed and a mass balance analysis can be used to identify 

and apportion sources of airborne PM in the atmosphere [1]. Focusing on the most spread 

and widely used methods, the Chemical Mass Balance (CMB) is frequently employed when a 

very detailed knowledge of sources and emission profiles is available. On the other hand, 

Positive Matrix Factorization (PMF) is the first in line when relatively little quantitative 

knowledge of sources and emission profiles are available, even though they do require initial 

qualitative knowledge of the sources present in the study area [2]. When a first approach or 

understanding is needed and chemical composition data for the major compounds as well as 

emission inventories for the corresponding areas are available, the apportionment according 

to the relative shares through the Lenschow approach for the emissions of each 

environment can be carried out [3]. 

Some multivariate receptor models are based on the analysis of the correlations between 

measured concentrations of chemical species, assuming that highly correlated compounds 

come from the same source. One commonly used multivariate receptor model is the 

Principal Component Analysis (PCA) that has already been often applied in several studies. 

However PCA is not a convenient tool for quantifying source contributions. Therefore several 
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Source Apportion Tools will be used, like the PMF that has been specially 

developed in order to address this problem. 

 

Figure 1 knowledge required about pollution sources prior to receptor modelling [4] 

In WP 3.2 we propose and apply a methodology for determining particulate emission 

sources and their concentrations at 3 sites, for example in Stuttgart for the traffic site 

“Hohenheimer Straße”, for the urban background “Bad Cannstatt” and for the regional 

background “Schwäbische Alb”. The following tree step process will be implemented: 

1. Collection of PM2.5 samples with low (or high) volume samplers and corresponding 

quartz filters on the receptor site and the chemical composition of each sampler was 

measured with several analytic methods of the different laboratories. After several 

pre-treatments a data matrix of chemical compounds concentrations in each sampler 

was selected. This step had been done for the winter campaign. The summer 

campaign is pending. 

2. PCA will be applied to this  data matrix and the standardized principal components 

were rotated, in order to identify possible sources of the different sites.  

3. After step 2, PMF will be applied to the same data matrix and the results will be 

normalized so that we can find components with physical interpretations (the 

concentration of each source in each particle sampler). 

Both steps are necessary because they are independent but the results of step 2 will be used 

to validate the results of step 3. [7] 
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3 Source apportionment approaches 

A number of different methods and models can be found to apportion particle contributions 

to a specific source or source group. It is not possible to say that there is just one perfect 

method to be employed. As it has been already mentioned, one approach is preferred 

among other depending on the type of available data, the computational effort required and 

if previous knowledge on the field of study (source profiles, emission compositions, emission 

inventories, etc) is needed. It is also relevant to mention that the output results may vary 

between the two different methods, but in general it can be said that the different 

approaches contribute in the identification of major sources agree in their trends [3]. 

3.1 The Lenschow approach 

In most PM characterization studies the composition of PM are measured for background, 

urban, and kerbside sites of the same region and they are compared by decomposing. Using 

the Lenschow methodology, a simple source apportionment analysis is carried out (see 

Figure 2) by considering the scenario of an urban background as an ‘‘island’’ of elevated PM-

levels arising from a regional background, and on top definite peak concentrations due to 

traffic hotspots at kerbside sites. Consequently, for this method measurements performed 

have to be divided in these three typical locations (regional background, urban background 

and kerbside sites) [6]. The basic data required to perform the source apportionment consist 

in chemical composition for the major compounds as well as emission inventories for the 

corresponding areas. With these measured compounds concentrations the apportionment is 

done according to the relative shares of the corresponding emissions for each environment 

[3]. The main advantage of this strategy is the simplicity of the method and the consequent 

low mathematical treatment required for the data processing.  

It directly relates measured PM levels to source categories listed in official emission 

inventories. The local increment measured at a traffic site, is considered to be exclusively 

caused by the local traffic emissions, if chemical composition does not indicate otherwise. 
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The validity of the results depends on the accuracy and completeness of the 

emission registers [3]. For some source types, the distribution depends on assumptions 

made that may have a high degree of uncertainty. 

 

Figure 2 Schematic horizontal profile of the ambient PM10 concentration according to the Lenschow 
approach 

 

One of the most relevant assumptions made within this method is that natural sources as 

well as contributions by transboundary long-range transport are usually not included, which 

may cause overestimation of the relative contributions by national emission sources [3]. 

After the main components are determined from the measured concentrations sampling 

analysis process, an emission data inventory and previous knowledge about the emissions 

help deriving, discriminating and determining the partitioning of the source contributions of 

the three previously classified factors, attributing each one of the species to the sources. 

At first glance, the major differences between the emitting sources should be evident, like 

for example if it is considered that the traffic station can be attributed mainly to 

urban origin

r e g i o n a l    b a c k g r o u n d
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carbonaceous material, assuming that it stems mainly from the exhaust emissions 

of vehicles, tyre abrasion and resuspension of road dust [7]. 

Regarding the urban background, for example depending on the height of stack emissions 

and dispersion calculations, it could be assumed how much percentage must be attributed 

to this kind of source. Also agglomerations could be contributing to this classification, but at 

the end all of this information can be concluded when the measurements for the specific 

case study are analyzed. 

3.2 Chemical Mass Balance (CMB) 

One of the biggest advantages that this model can offer is that it can work on a single sample 

if the source data is known while on the other hand multivariate methods require a series of 

samples [4].  

CMB consists of a least square solution to a set of linear equations which express each 

receptor concentration of a chemical species as a linear sum of products of source 

compositions (fractional amount of the species in the emissions from each source type) and 

source contributions [4]. In order to be able to employ this method, the following a priori 

information is required as input data: Concentration of the different species, source profiles 

and the correspondent uncertainties.  

The output basically consists in the amount contributed by each source type to each 

chemical species. The model also provides as an output the uncertainties for those inputs. 

The uncertainties introduced as an input contribute to weight the importance of the input 

data in the solution and to calculate the uncertainties of the source contributions [4]. 

3.2.1 CMB Model Assumptions 

1. Compositions of source emissions are constant over the period of ambient and 

source sampling. 

2. Chemical species do not react with each other (reactive species such as 

Ammonium, Nitrate, Sulfate and elemental Carbon are then apportioned to 

chemical compounds rather than directly to sources - Secondary emitters). 
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3. All sources with a potential for significantly contributing to the 

receptor have been identified and have had their emissions characterized. 

4. The source compositions are linearly independent from each other (from 5 to 7 

sources are linearly independent of each other in most cases). 

5. The number of sources or source categories is less than or equal to the number of 

chemical species. (In some cases the number of sources turns out to be larger 

than the number of species that can be measured. In those situations it is 

necessary to group sources into source-types of similar compositions). 

6. Measurement uncertainties are random, uncorrelated, and normally distributed. 

(A log-normal distribution is employed since it does not allow negative values and 

due to the fact that ambient concentrations can never be negative. For small 

errors is not important (< 20%), for large errors is important) 

On a real basis, these assumptions will not be accomplished 100%, but the model is able to 

tolerate some deviations, however this increases the stated uncertainties of the source 

contribution estimates. Test improves and the magnitude of source contribution errors 

diminishes if the number of species and sources are increased [6]. 

 

3.2.2 Mathematical work 

The mathematical work behind the CMB Model has the following expression as the starting 

point [6]: 

𝑆𝑗 = 𝐷𝑗 ∗ 𝐸𝑗 (1) 

Where: 

Sj: Measured concentration due to a source j 

Dj: Dispersion Factor, which has a dependence on the wind velocity (u), atmospheric stability 

(σ), and the location of source j with respect to the receptor (xj). Taking into account that all 

of these parameters vary with time, this factor must be an integral over time period T. For 

the CMB model, this parameter does not have to be fully known. 

Ej: Constant emission rate 
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The total mass measured at the receptor site, will be a linear sum of the 

contributions from the individual sources [6].  

 

𝐶 =  ∑ 𝑆𝑗𝐽
𝑗=1         (2) 

 

The concentration of elemental component i, Ci is expressed as [6]: 

 

𝐶𝑖 =  ∑ 𝐹𝑖𝑗 ∗ 𝑆𝑗
𝐽
𝑗=1         (2) 

Where: 

Fij: is the fraction of source contribution Sj of element i.  

The number of chemical species (l) must be greater than or equal to the number of sources 

(J) for a unique solution of this equations [6].  

For the solution of the CMB equations and taking into account that it has to be constrained 

to obtain positive values and/or it might be necessary to add a non-zero constant intercept 

term, the “Ordinary weighted least square solution” is the preferred method, but nowadays 

the CMB Software is applying the “Effective variance least squares solution” because it 

provides realistic estimates of the uncertainties of the source contributions and it gives 

greater influence to chemical species with higher precisions [6]. 

This method consists in minimizing the weighted sums of the squares of the differences 

between the measured and calculated values of Ci and Fij. An iterative procedure proceeds, 

calculating a new set of Sj based on the Sj estimated from the previous iteration [6]. 

Procedure: 

(1) The initial estimation of the source contributions is set equal to zero 

 

𝑆𝑗
𝑘=0 = 0   𝑗 = 1, … , 𝐽    (4) 
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S: (S1…Sj)T a column vector with Sj as the jth component. 

 

(2) Calculate the diagonal components of the effective variance matrix Ve. The rest of 

the components of this matrix are also set to zero. 

 

𝑉𝑒𝑔
𝑘 = 𝜎𝐶𝑖

2 + 𝜎(𝑆𝑗
𝑘)2 ∗ 𝜎𝑓𝑔

      (5) 

σCi = One standard deviation precision of the Ci measurement. 

(3) Calculate the k+1 value of Sj 

𝑆𝑘+1 = (𝐹𝑇(𝑉𝑒
𝑘)−1𝐹𝑇)(𝑉𝑒

𝑘)−1𝐶      (6) 

C: (C1…Cl)T a column vector with Ci as the ith component  

F: An I x J matrix of Fij, the source composition matrix. 

 

(4) Test the (k+1)th iteration of the Sj against the kth iteration. If they differ by more 

than 1 percent, then perform the next iteration. If all differ by less than 1 percent, 

then terminate the algorithm.  

• 𝐼𝑓 
|𝑆𝑗

𝑘+1−𝑆𝑗
𝑘|

𝑆𝑗
𝑘+1 > 0.01, 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 2 

 
(3) 

•  

• 𝐼𝑓 
|𝑆𝑗

𝑘+1−𝑆𝑗
𝑘|

𝑆𝑗
𝑘+1 ≤ 0.01, 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 5 

 

(5) Assign the (k+1)th iteration to Sj and σSj. All the other calculations are performed 

with this final values. 

 

𝜎𝑠𝑗
= [𝐹𝑇(𝑉𝑒

𝑘+1)−1𝐹𝑗𝑗]
−1/2

      (8) 

3.2.3 CMB Input/Output 

Inputs 

• Concentrations of the species Ci,  

• Fractional amount of the species in each source-type emission (Source Profile) 

Fij. 
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• Uncertainty estimations of σCi and σFij also as an input (as already 

mentioned, to weight the importance of input data values in the solution and 

to calculate the uncertainties of the source contributions). 

Outputs 

• Source contributions estimates (Sj) of each source type. 

• Standard errors of these source contribution estimates.  

• Amount contributed by each source-type to each chemical species. 

 

3.3 Positive Matrix Factorization (PMF) 

PMF is a multivariate factor analysis tool that decomposes a matrix of speciated sample data 

into two matrices: factor contributions (G) and factor profiles (F). These factor profiles need 

an interpretation by the user to identify the source types that may be contributing to the 

sample employing measured source profile information, emissions or discharge inventories 

[5].  

With this model the main constraint that has to be accomplished is that no sample can have 

significantly negative source contributions. PMF requires as an input the sample 

concentrations and user-provided uncertainty associated with each sample data to weight 

individual points.  

Factor contributions and profiles are derived by the PMF model minimizing the objective 

function Q [5]: 

𝑄 = ∑ ∑ [
𝑥𝑖𝑗−∑ 𝑔𝑖𝑘𝑓𝑘𝑗

𝑝
𝑘=1

𝑢𝑖𝑗
]

2
𝑚
𝑗=1

𝑛
𝑖=1      (9) 

Where:  
xij: Data matrix X of i by j dimensions, in which i number of samples and j chemical species 
were measured  

fkj: Species profile of each source  

gik: Amount of mass g contributed by each factor to each individual sample  

uij: Uncertainties  
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Q turns out to be a critical parameter for the PMF model and two versions of Q are displayed 

for the model runs [5]:  

Q(true) is the goodness-of-fit parameter calculated including all points.  

Q(robust) is the goodness-of-fit parameter calculated excluding points not fit by the 

model, defined as samples for which the uncertainty-scaled residual is greater than 4.  

 

PMF Model developed by the Environmental protection Agency (EPA) requires multiple 

iterations by means of the Multilinear Engine (ME) algorithm, in order to identify the most 

optimal factor contributions and profiles. The best solution is usually identified by the lowest 

Q(robust) value along the path (i.e., the minimum Q). To maximize the chance of reaching the 

global minimum, the model should be run at least for 20 times developing a solution and 

100 times for a final solution, each time with a different starting point [5]. If the data provide 

a stable path to the minimum, the Q(robust) values will have little variation between the runs 

[5].  

The lowest Q(robust) value is used by default since it represents the most optimal solution.  

Variability in the PMF solution can be estimated using three methods [5]:  

1. Bootstrap (BS) analysis is used to identify whether there are a small set of 

observations that can disproportionately influence the solution.  

2. Displacement (DISP) is an analysis method that helps the user understand the 

selected solution in finer detail, including its sensitivity to small changes. Data 

uncertainty can directly impact DISP error estimates.  

3. BS-DISP (a hybrid approach) error intervals include effects of random errors and 

rotational ambiguity. It is more robust than DISP.  
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3.4 Principal Component Analysis (PCA) 

The PCA can be carried out using numerous statistical software packages. The computation 

of source contributions with the PCA is characterised by a fast source identification where no 

specific software is required and it is a relatively time-consuming source contribution 

estimation. PCA is an exploratory receptor modelling tool for urban air quality management, 

i.e. for the design of air pollution mitigation strategies. 

There are several model performance indicators available when applying PCA [4]: 

1. A correlation between the modelled and the measured PM mass. 

2. The chemical mass closure: the sum of the estimated source contributions and the 

comparison with the total measured PM mass. 

3. There is an average absolute error (AAE): the average of the absolute percentage 

differences between the estimated and the experimental PM mass data, when 

different numbers of sources or factors are considered (Chow et al., 2007, Table 

B10.2). 

4. The correlation between modelled and measured known sources: the most 

commonly used source for this test is the marine source, calculated as the sum of the 

chemically determined Na and Cl in study areas with no other major sources of the 

elements. 
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4 Field campaigns 

The necessary data can possibility been taken from an extensive monitoring field campaign, 

that is taking place in all the 6 cities: (Athens, Thessaloniki, Madrid, Stuttgart, Ljubljana, 

Brno) at 3 sites (traffic hot spot, urban background, regional) which are part of the 

monitoring network of the city and are equipped by additional instrumentation (PM2.5 

sampler). The duration of every campaign (winter/summer) will last 1 month per season (30 

days of sampling). 

 

4.1 Measurement sites 

Table 1 Overview measurement sites 

Cities 

(responsible 

partner) 

Monitoring sites 

Traffic hot spot 

(NOX, O3, BC, SO2, 

Benzol, PM10) 

 

+ 1 Sampler for PM2.5 

(quartz filter) 

Urban background 

(NOX, O3, BC, SO2, 

Benzol, PM10) + 

GHG 

+ 1 Sampler for 

PM2.5 (quartz filter) 

Regional (NOX, O3, BC, 

SO2, Benzol, PM10) + 

GHG 

 

+ 1 Sampler for PM2.5 

(quartz filter) 

Athen 

(NCSRD) 

Aristotelous 

Excl.: BC, Benzol, O3 

Ag. Paraskevi 

Excl.: BC 

Aliartos 

Distance from city 

center: 101 km 

Excl.: BC, SO2, Benzol 

Thessaloniki 

(AUTH) 

1) Egnatia 

2) University campus 

1) Stavroupoli 

2) Eptapyrgio 

Neochorouda 

Stuttgart 

(USTUTT) 

Hohenheimer Straße 

Excl.: BC, SO2 

Bad Cannstatt 

Excl.: BC 

Schwäbische Alb 

Distance from city 

center: 47 km 

Excl.: BC 

Madrid E. Aguirre station Farolillo station Casa de Campo station 
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(ISCIII)  

Excl.: BC 

 

Excl.: BC 

 

Excl.: BC 

Brno 

(MU) 

Brno-Svatoplukova 

 

Excl.: O3, BC, SO2, 

benzol 

Brno-Lány 

 

Excl.: BC, Benzol, 

GHG 

Košetice 

Distance from city 

center: 130 km 

Not hourly data: BC, 

Benzol, GHG 

Ljubljana 

(JSI) 

MOL – Vosnjakova 

Excl.: O3, BC 

ARSO – Bezigrad 

Excl.: BC, Benzol 

TETOL – Zadobrova 

Distance from city 

center: 7 km 

Excl.: BC, Benzol, GHG 

4.2 Sampling 

4.2.1 Devices 

There are low volume and high volume samplers used, that differs in the diameter of the 

sampling filter. 

4.2.2 Sampling filters 

A filter type is used that is appropriate for all the chemical analysis that will be performed 

(OC/EC, Ions, PAHs and HM): 47mm Tissue Quartz 25000 QAO PALL membrane filters (Pall) 

or the corresponding WHATMAN filter for low volume samplers (precipitator head 2,3m³/h). 

For high volume samplers the corresponding filter is used. 

4.2.3 Methodology  

The methodology for preparing the filters, sampling and conditioning afterwards is described 

in the EN 12341:2004. 

4.2.4 Further processing of the filters 

The sampled filters were appropriate divided into 3 pieces using a surgical scalpel in order to 

be analyzed for all the proposed species. Every cut part is weighted in order to exactly 

quantify the distribution of particles onto these 3 pieces. A quarter of the filter will be used 
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for the OC/EC analysis, one quarter for the ions analysis and one half for the 

heavy metals (first using XRF – nondestructive method) and then for the PAHs). 

4.3 Species to analyze 

There are 4 groups of most important species that will be used in the source apportionment: 

ions, organic carbon / elemental carbon (OC / EC), Benz[a]Pyrene (B[a]P), heavy metals 

(HM). This group will be analyzed from the gravimetric measurements. The greenhouse 

gases (GHG) will be measured by a light manned aircraft. 

4.3.1 Anions 

The group of the anions contain the following species: 

Table 2 Anions to be analyzed 

Symbol Species 

Cl Chlorine 

Br Bromine 

𝑆𝑂4
2− Sulfuric acid 

𝑁𝑂3
− Nitrate 

𝑃𝑂4
3− Phosphate 

4.3.2 Cations 

The group of the cations contain the following species: 

Table 3 Cations to be analyzed 

Symbol Species 

𝑁𝑎+  Sodium 

𝐾+ Potassium 

𝑀𝑔2+ Magnesium 

𝐶𝑎2+ Calcium 

𝑁𝐻3+ Ammonia 
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4.3.3 Carbon 

The group of carbon includes the organic carbon (OC) and the elemental carbon (EC). 

4.3.4 Heavy metals 

The group of the heavy metals contain the following species: 

Table 4 Heavy metals to be analyzed 

Symbol Species 

Pb Lead 

Ni Nickel 

Cu Copper 

Cr Chromium 

Mn Manganese 

Fe Iron 

Co Cobalt 

Zn Zinc 

Mg Magnesium 

Si Silicon 

S Sulfur 

Cl Chlorine 

K Potassium 

Ca Calcium 

Ti Titanium 

V Vanadium 

Ge Germanium 

Br Bromium 

Rb Rubidium 

Sr Strontium 

Sb Antimony 
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4.3.5 PAHs 

The PAH analysis is only performed for one site because of several reasons: the PAHs are not 

a priority species for the approached source apportionment techniques. Due to their low 

concentrations in the ambient air (usually in ng/m³) they have a higher uncertainty in 

comparison to the other species used in the source apportionment. Also PAHs usually reveal 

the combustion sources, which can be also revealed by other species or a combination of 

them. Another responsible reason is the high analytical procedure and cost. That results in 

analyzing  PAHs only in one site (e.g. traffic site) per city for 30 days. 

 



 
 

18 
 

Ref. Ares(2016)1512245 - 30/03/2016 

 

4.4 Analytical effort 

Table 5 Analytical effort 

Partner Number of samples to be chemically analyzed   

 Ions OC/EC B[a]P HM  GHG 

PM2.5 

6 cities x 3 sites x 60 

samples (30 warm + 30 

cold period) 

6 cities x 3 sites x 60 

samples (30 warm + 30 

cold period) 

6 cities x 1 sites x 30 

samples (15 warm + 15 cold 

period) 

6 cities x 3 sites x 60 

samples (30 warm + 30 

cold period) 

 

6 cities x 2 sites 

(UB) x 20 samples 

(10 warm + 10 

cold) x 2 years 

TOTAL 1080 1080 180 1080  480 

NCSRD 
540 (Athens, Madrid, 

Ljubljana) 
- 30 (Athens, Brno) 360 (Athens, Ljubljana)  480 (all cities) 

AUTH 
540 (Thessaloniki, 

Stuttgart, Brno) 
- 30 (Thessaloniki) 360 (Thessaloniki, Brno)   

ISCII - 1080 (all cities) 30 (data from Madrid city) 
120 (data from Madrid 

city) 
  

USTUTT - - 30 (data from Stuttgart city) 
180 (data from Stuttgart 

city) 
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JSI   60 (Ljubljana, Brno)    
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5 Source apportionment tools 

For PCA there is no specific software needed, also for the Lenschow Approach . 

To apply the PMF the EPA software tool “PMF 5.0” will be used. EPA’s Positive Matrix 

Factorization (PMF) Model is a mathematical receptor model developed by EPA scientists 

that provides scientific support for the development and review of air and water quality 

standards, exposure research and environmental forensics. The PMF model can analyze a 

wide range of environmental sample data: sediments, wet deposition, surface water, 

ambient air, and indoor air. EPA’s PMF model reduces the large number of variables in 

complex analytical data sets to combinations of species called source types and source 

contributions. The source types are identified by comparing them to measured profiles. 

Source contributions are used to determine how much each source contributed to a sample. 

In addition, EPA PMF provides robust uncertainty estimates and diagnostics. 

The users of EPA’s PMF model provide files of sample species concentrations and 

uncertainties, and also the number of sources. The model calculates the source profiles or 

fingerprints, source contributions, and source profile uncertainties. The PMF model results 

are constrained to provide positive source contributions and the uncertainty weighted 

difference between the observed and predicted species concentration is minimized. The 

PMF model software uses graphical user interfaces that ease data input, visualization of 

model diagnostics, and exporting of results. The model is free of charge, and does not 

require a license or other software to use. Algorithms used in the PMF model have been 

peer reviewed by leading air and water quality management scientists. [5] 
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6 Conclusions 

In every of the 6 cities, there are 3 sites (traffic, rural background, regional background) 

where PM2.5 is measured for summer and winter campaign (30 days per campaign). There 

are sampling devices used following the methodology described in EN 12341:2004. After the 

measurement period, the filters were sent to the different partner laboratories and the 

chemical analysis followed. With the results of the chemical analysis, the source 

apportionment can be applied. First starting with the PCA and then the second step PMF. 

The results of the PCA will be used to validate the results of the PMF. Results of the source 

apportionment are estimations of source profiles from different measurement stations 

(traffic, rural background, regional background).  
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