

Horizon 2020

Societal Challenge: Improving the air quality and reducing the carbon footprint of European cities

Project: 690105 - ICARUS

Full project title:

Integrated Climate forcing and Air pollution Reduction in Urban Systems

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities

WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales

Lead beneficiary: AUTH

Date: October 2018

Nature: Report

Dissemination level: Public

Table of Contents

DO	CUMENT INFORMATION	5
1.	OBJECTIVE	6
2.	BACKGROUND	7
3.	METHODOLOGY	10
3.1	. Overall Strategy	10
3.2	2. The study areas	10
3.3	8. The climatic scenario	11
3.4	I. The Weather clustering approach	11
3	.4.1 Weather classification	11
3	.4.2 The Weather Data	11
3	.4.3. Principal Component Analysis	12
3	.4.4. K- Means Cluster Analysis	12
3	.4.5 Clusters interpretation methodology	15
3.5	The Atmospheric Modeling	16
3	.5.1. The Models	16
3	.5.2 The Grids	17
3.6	The Emission Inventories	18
3.7	/ Benzo(a)pyrene in PM	18
3.8	The Emission Trends Influence	23
3.9	Green House Gases (GHGs)	24
3	.9.1. The Model	24
3	.9.2. The Approach	24
4.	RESULTS AND DISCUSSION	30
4.1	Air Quality data	

D3.3: Report on AQ and GHGs concentration at the	e ground level in the	ICARUS cities
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 3/269

4.2 Stuttgart	32
4.2.1 PCA results	
4.2.2 Clustering results	
4.2.3 Air Quality Modeling results	
4.2.4 The GHGs Modeling results	61
4.2.5 Conclusions	62
4.3 Brno	63
4.3.1 PCA results	63
4.3.2 Clustering results	63
4.3.3 Air Quality Modeling results	77
4.3.4 The GHGs Modeling results	85
4.3.5 Conclusions	86
4.4 Basel	87
4.4.1 PCA results	87
4.4.2 Clustering results	
4.4.3 Air Quality Modeling results	
4.4.4 The GHGs Modeling results	
4.4.5 Conclusions	110
4.5 Athens	
4.5.1 PCA results	
4.5.2 Clustering results	
4.5.3 Air Quality Modeling results	
4.5.4 The GHGs Modeling result	
4.5.5 Conclusions	
	126
4.6.1 PCA results	
4.6.2 Clustering results	
4.0.5 Air Quality Modeling results	
4.6.4 The GHGs Modeling results.	
4.6.5 Conclusions	
4.7 Milan	160

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 4/269

4.7.1 PCA results	
4.7.2 Clustering results	
4.7.3 Air Quality Modeling results	
4.7.4 The GHGs Modeling results	
4.7.5 Conclusions	
4.8 Madrid	
4.8.1 PCA results	
4.8.2 Clustering results	
4.8.3 Air Quality Modeling results	
4.8.4 The GHGs Modeling result	
4.8.5 Conclusions	
4.9 Copenhagen – Roskilde	
4.9.1 PCA results	
4.9.2 Clustering results	
4.9.3 Air Quality Modeling results – Copenhagen wider area	
4.9.4 Air Quality Modeling results – Roskilde wider area	231
4.9.5 The GHGs Modeling results	
4.9.6 Conclusions	
4.10 Ljubljana	
4.10.1 PCA results	
4.10.2 Clustering results	
4.10.3 Air Quality Modeling results	
4.10.4 The GHGs Modeling results	
4.10.5 Conclusions	
4.11 Local heat waves versus O ₃ concentrations	
5. CONCLUDING REMARKS	265
6. REFERENCES	267

Document Information

Grant Agreement Number	690105	Acronym	ICARUS
Full title Integrated Climate for Systems		orcing and Air pollutic	n Reduction in Urban
Project URL	www.icarus2020.eu		
Project Officer	Mirjam Witschke - Mirjam.WITSCHKE@ec.europa.eu		

Delivery date	Contractual	October 2017	Actual	October 2018
Status	Draft		Final $$	
Nature	Demonstrator	Report $$	Prototype	Other
Dissemination level	Confidential	Public $$		

Responsible Author (Partners)	AUTH			
Responsible	Denis Sarigiannis		Email	denis@eng.auth.gr
Author	Partner	AUTH	Phone	+30-2310-994562
Other partners (Institution)	NCSRD, USTUTT, CMCC			

Document History

Name (Institution)	Date	Version
AUTH	January 2018	First draft
СМСС	March 2018	Second draft
AUTH	June 2018	Third draft
AUTH	October 2018	Final

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS citiesWP3 Integrated atmospheric modelling for
connecting pressures to the environment to
concentrations at the regional and urban scalesSecurity:PublicAuthor(s): AUTH, USTUTT, CMCC, NCSRDVersion: FinalPage 6/269

1. Objective

The main objective of this report is to provide high space and time resolution ground concentrations reflecting climatic trends for the period 2001-2050.

- on major air pollutants (PM₁₀, PM_{2.5}, NO₂, O₃, BaP)
- on major Greenhouse Gases (CO₂, CH₄)

in Europe, focusing on nine (9) cities i.e. Thessaloniki, Athens, Madrid, Stuttgart, Ljubljana, Brno, Milan, Basel and Copenhagen/Roskilde using

- appropriate climatic and emission scenarios and
- appropriate air modelling and statistical tools.

The changes on climate and emissions over time, on the air concentration levels of the abovementioned pollutants need to be assessed.

2. Background

In a general description the statistical changes in the climate system over long periods of time defines the widely used term of "climate change". The last decades the extensively human activities considerably altered climate and earth's temperature by burning fossil fuels, cutting down rainforests and farming livestock. As a result, enormous amounts of greenhouse gases are produced and are added to those naturally occurring in the atmosphere, increasing the greenhouse effect (https://ec.europa.eu/clima/change/causes en). Anthropogenic causes affected the climate both in terms of the global warming and the increase of greenhouse gas levels. The fact that emissions, transport, dilution, chemical transformation, and eventual deposition of air pollutants all can be significantly influenced by weather patterns as a result affecting the level of Air Quality (Kinney, 2008). Meteorological parameters like wind conditions and atmospheric boundary height could affect pollutants' transport and their accumulation. Also, temperature variation, solar radiation and air's humidity could impact on the chemical reaction rates and pollutants' emission. Global and large-scale climate changes through years affects urban and local conditions. The meteorological, topographic and land use variability could influence significantly the spatial and temporal patterns on the air quality and air pollutants concentrations.

Projections of changes in the climate system can be performed taking into consideration prescribed socio-economic and emission scenarios. One result of such a systematic effort prompted by the Intergovernmental Panel on Climate Change (IPCC) was the generation of the four (4) Representative Concentration Pathways (RCPs) scenarios. The main aim was that the RCPs need to refer to emissions and land use compatible with the full range of scenarios existing in the literature including extreme as well as intermediate scenarios. The four RCPs (i.e. RCP2.6, RCP4.5, RCP6, RCP8.5) together span the range of year 2100 radiative forcing values found in the open literature i.e. from 2.6W/m² to 8.5W/m². (van Vuuren et al., 2011). The RCP characteristics are given in Table 2.1.

	Description	Publication-Integrated Assessment Model
RCP8.5	Rising radiative forcing pathway leading to 8.5 W/m ² (~1370 ppm CO ₂ eq) by 2100.	(Riahi et al., 2007)—MESSAGE
RCP2.6	Stabilization without overshoot pathway to 6 W/m2 (~850 ppm CO ₂ eq) at stabilization after 2100	(Fujino et al., 2006; Hijioka et al., 2008)— AIM
RCP4.5	Stabilization without overshoot pathway to 4.5 W/m ² (~650 ppm CO ₂ eq) at stabilization after 2100	(Clarke et al., 2007; Smith and Wigley 2006; Wise et al., 2009)—GCAM

Table 2.1: The Representative Concentration Pathways (RCP) (van Vuuren et al., 2011)

*	D3.3: Report on AQ and GHGs concentration at the g	round level in the IC	ARUS cities
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 8/269

RCP2.6	Peak in radiative forcing at ~3 W/m ² (~490 ppm CO ₂ eq) before 2100 and then decline (the selected pathway declines to 2.6 W/m ² by 2100).	(Van Vuuren et al., 2007a; van Vuuren et al., 2006)—IMAGE
--------	--	--

The high pathway (RCP8.5) for which radiative forcing reaches >8.5 W/m² by 2100 and continues to rise for some amount of time; two intermediate "stabilization pathways" (RCP 6-4.5) in which radiative forcing is stabilized at approximately 6 W/m² and 4.5 W/m² after 2100; and one pathway (RCP2.6) where radiative forcing peaks at approximately 3 W/m² before 2100 and then declines.

The RCP exercise has provided a comprehensive dataset with respect to emissions a land cover as shown in Table 2.2. This database allows the user to preview and download data both at the level of aggregated regions and in gridded format. The database can be accessed by the following link:

http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=welcome

	Resolution (sectors)	Resolution (geographical)	
Emissions of greenhouse gases			
CO ₂	Energy/industry, land	Global and for 5 regions	
CH4	12 sectors	0.5°×0.5° grid	
N ₂ O, HFCs, PFCs, CFCs, SF6	Sum	Global and for 5 regions	
Emissions aerosols and chemically active gases			
SO ₂ , Black Carbon (BC), Organic Carbon (OC), CO, NOx, VOCs, NH ₃	12 sectors	0.5°×0.5° grid	
Speciation of VOC emissions		0.5°×0.5° grid	
Concentration of greenhouse gases			
(CO ₂ , CH ₄ , N ₂ O, HFCs, PFCs, CFCs, SF6)	-	Global	
Concentrations of aerosols and chemically active gases			
(O ₃ , Aerosols, N deposition, S deposition)	-	0.5°×0.5° grid	
Land-use/land-cover data	Cropland, pasture, primary vegetation, secondary	0.5°×0.5° grid with subgrid fractions, (annual maps and transition matrices including	
	vegetation, forests	wood harvesting)	

Table 2.2: The RCP available information (van Vuuren et al., 2011)
Image: state of the st

ICARUS	D3.3: Report on AQ and GHGs concentration at the g	centration at the ground level in the ICARUS cities		
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public	
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 9/269	

RCP Database was used for the new climate model simulations carried out under the framework of the Coupled Model Intercomparison Project Phase 5 (CMIP5) of the World Climate Research Programme (Taylor et al., 2012). More specifically, the Community Earth System Model (CESM) a coupled global climate model comprised of four component models that simulate the atmosphere, ocean, land surface and sea-ice has been used for this purpose. More info can be found in <u>http://www.cesm.ucar.edu/</u>. Model outputs have been successfully produced based on RCP 4.5, 6.0 and 8.5 and are available for further use from NCAR's CISL Research Data Archive (http://rda.ucar.edu/datasets/ds316.0), and from the Earth System Grid Q Program for Climate Model Diagnosis and Intercomparison (ESGQ-PCMDI) gateway at Lawrence Livermore National Laboratory (http://pcmdi3.llnl.gov/esgcet/home.htm).

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 10/269

3. Methodology

3.1. Overall Strategy

Trying to follow climatic changes on local meteorology and air quality is a very demanding effort in terms of computational capability and computational time.

Thus, the present methodological strategy is based on the following principles:

- 1. Minimize the required CPU time;
- 2. Provide a methodological approach to avoid unnecessary additional computational runs.

Based on the above principles and taking into consideration the modeling state of the art, the project contractual requirements and the available resources the following decisions have been made:

- 1. Provide the necessary meteorological input for the future years following the IPCC scenarios based on the Fifth Assessment Report (AR5) and on the Representative Concentration Pathways (RCP);
- 2. Investigate the possibility to provide air quality future trends and representative detailed results following the concept of weather clustering/classification;
- 3. Produce the abovementioned detailed results by using WRF-Chem methodology to provide hourly concentrations of air pollutants in both regional and local scale on the selected representative days.

3.2. The study areas

The selected cities and their center locations are given in Table 3.1.

1	Table 3.1: Location of the study areas		
Point of domain's center	Longitude	Latitude	
Stuttgart	9.13	48.80	
Athens	23.77	37.97	
Thessaloniki	22.87	40.78	
Milan	9.23	45.49	
Madrid	356.30	40.46	
Basel	7.55	47.55	
Brno	16.66	49.14	
Copenhagen wider area	12.56	55.64	
Roskilde wider area	12.08	55.63	
Ljubljana	14.53	46.01	

In each city a local domain of an area 50km*50km is considered surrounding the city center. Given rather the small size of Roskilde city area it is considered to is adequate to be selected a 25km*25km area.

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 11/269

3.3. The climatic scenario

RCP4.5 seems to be a realistic scenario and therefore it is selected for the present analysis. It is a low-to-moderate emissions scenario with GHG radiative forcing reaching 4.5W/m² near 2100. It represents a trajectory that may be plausible if, for instance, GHG emissions pricing were introduced to limit radiative forcing (Thomson et al., 2011).

3.4. The Weather clustering approach

3.4.1 Weather classification

Meteorological temporal and spatial processes and conditions influence air pollutants' transport, accumulation and concentrations. Also, large time scale changes in the weather conditions may affect air pollutants' level (Austin et al., 2014). To investigate the climatic, meteorological and air quality conditions in a particular area for a wide time period, the identification of weather patterns has a significant role. Performing weather classification is a way to create distinguished groups of different weather patterns. These sets of weather regimes could help to identify weather conditions occur in the future (Serra et al., 1999). Weather pattern classification shows relationship with atmospheric air quality levels (Demuzere and van Lipzig, 2010) such as in PM variations (Rimetz-Planchon et al., 2008; Chang and Zhan, 2017). Also, when it comes to estimate pollutants' concentrations, using advanced modeling tools, it is time-wise to apply these modeling approaches of large data sets in alternative smaller periods which are described by consistent weather characteristics (Sfetsos et al., 2005).

Cluster analysis is a statistical method able to identify, from a large dataset, subgroups with some degree of homogeneity. Based on nesting technique (partitioning or hierarchical), their approach (fuzzy or crisp clustering), or special purpose sequential data set, very large database. In hierarchical technique clusters are classified at various levels, whereas in partitioning technique clusters are optimized by specific clustering criterion (such as the number of clusters). In crisp clustering method the boundary between clusters is fully defined while when the boundaries between clusters cannot be clearly defined fuzzy clustering methods such as Fuzzy c-means, Mountain or subtractive clustering method or Partition Simplification Fuzzy C-means method work better (Moertini, 2002).

Within the nonhierarchical crisp techniques, k-means method (Huth et al. 2008) seems to perform well through various methods in the field of weather pattern identification (Beck and Philipp, 2010, Cahynova and Huth, 2010). It is noticed that k-means has been widely used for weather clustering (Serra et al., 1999; Bejaran et al., 2003; Hoffmann and Schlunzen, 2013; Austin et al., 2014). Thus, the k-means method is selected for the present studies. The details of k-means method present implementation are given below.

3.4.2 The Weather Data

For 50 years period, from 2001 to 2050, weather data are derived from the Coordinated Regional Climate Downscaling Experiment (CORDEX - http://cordex.org) provided from the

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities			
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public	
		Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 12/269

Earth System Grid Federation (ESGF) index nodes. Database can be accessed by the following link: <u>http://cordex.org/data-access/esgf/</u>

From the available Regional Climate Models (RCMs) which are participating in CORDEX, the INERIS-WRF331F was selected. Using the high horizontal resolution domain EUR 11 (about 10 km resolution) (ICARUS Report D3.1) this RCM provides high number of climate parameters at higher time frequency (daily). The moderate RCP4.5 scenario was selected. Following previous work (Serra et al., 1999; Austin et al., 2014; Makra et al., 2006; Sfetsos and Bartzis, 2007), the weather parameters considered, include (1) the 2-meter temperature, (2) the daily temperature range, (3) the 2-meter relative humidity (%), (4) the surface pressure, (5) the precipitation, (6) the 10- meter U-component wind velocity, (7) the 10-meter V-component wind velocity, (8) the downward short-wave surface radiation and (9) the atmospheric boundary layer thickness. Each of the above parameters has been averaged over the selected 50km x 50km city domain. All those variables were standardized to have zero mean and unity variance to avoid any bias from the individual parameter magnitude variety. For managing the netcdf files netCDF Operator (NCO) programm has been used. MATLAB software was used for exporting and editing and analysing the data.

3.4.3. Principal Component Analysis

The cluster analysis as described below need to be based on a number of uncorrelated variables Among the above-mentioned weather parameters some degree of correlation is expected. Principal component analysis (PCA) is a mathematical method that enable us to transform a number of (possibly) correlated parameters (such as the abovementioned weather parameters into a (smaller) number of uncorrelated variables called principal components

(https://eclass.uoa.gr/modules/document/file.php/DI367/%CE%A5%CE%BB%CE%B9%CE%B A%CF%8C/PCA_method.pdf). PCA was applied to each city dataset which is composed by nine (9) columns (I,e, the above mentioned weather parameters) and ~18250 rows (each row corresponding to the observations of one day). VARIMAX rotation has been applied, which is a change of coordinates in principal component analysis (PCA) that maximizes the sum of the variances of the squared loadings. Thus, all the coefficients (squared correlation with factors) will be either large or near zero, with few intermediate values. The goal is to associate each variable to at most one factor (http://data-mining-tutorials.blogspot.com/2009/12/varimaxrotation-in-principal-component.html). PCA has been applied by using SPSS software. As an output, a new matrix is produced that includes again all the days of the study. Each day is now defined with the values of the selected principal components called factors or scores F (Preisendorfer and Mobley, 1988).

3.4.4. K- Means Cluster Analysis

In the k-means cluster analysis, a number of n vectors is partitioned to preselected k groups called clusters. The final grouping is done in such a way, that in every cluster, the sum of the squares of the distances of its vectors from the cluster centroid becomes minimal. Here, the number of vectors are the number of days under study. The vector that corresponds to each day consists of the values of the variables produced by the abovementioned PCA. For the

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 13/269

present k-means clustering, the Lloyd's algorithm (Lloyd, 1982) has been applied. It has been applied by using the built in Matlab function.

The next step; is to define the optimal number of clusters. As an output, the Within Sum of Squares [WSS(k)] is calculated for each cluster's selection, defined as follows (Hoffmann and Schlunzen, 2013):

where x denotes all data objects belonging to the cluster Ci; zi is the ith corresponding cluster centroids (CC).

As an example, the WSS(k) parameter for the city of Brno is shown as a function of the number of clusters (k) in Figure 3.1.

Figure 3.1: WSS values vs k cluster solution

It should be noted that WSS(k) decreases as the number of clusters increases. Figure 3.2 shows the corresponding fractional decrease defined as (Austin et al., 2014).

fractional decrease in
$$WSS(k) = \frac{WSS = WSS(k) - WSS(k+1)}{WSS(k)}$$

Figure 3.2: The WSS parameter for the city of Brno

The decrease slows significantly after k=8. This is a major criterion for selecting the final number of clusters (Austin e al., 2014) provided that the individual clusters have distinguishable differentiations at least with respect to weather patterns and air quality. Thus, for the city of Brno the final cluster number is taken equal to 8.

The same selection methodology was applied for the rest nine (9) cities. Table 3.2 gives the number of selected clusters for the ICARUS cities.

City	Number of clusters
Brno	8
Stuttgart	10
Basel	8
Athens	10
Thessaloniki	8
Milan	8
Madrid	10
Copenhagen - Roskilde	8
Ljubljana	6

Table 3.2: Clusters Numbers for the ICARUS cities

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 15/269

3.4.5 Clusters interpretation methodology

Clusters characterization

The cluster characteristization is mainly based on the weather parameters statistics (Average, SD, Min, Max) as well as wind patterns.

Clusters trends

Examine changes in 5-year period cluster frequencies of occurrence_over the whole range of 50-years to identify relevant climatic trends.

Clusters and local heat waves

In Guerreiro et al. (2018) heat waves were defined as three consecutive days, where both the maximum and the minimum daily temperature exceed their respective 95th percentile from the historical summer data in 1951-2000 for months from May to September. Following this idea, in the present study, heat waves were defined as three consecutive days, where both the maximum and the minimum daily temperature exceed their respective 95th percentile from the period 2001-2050, using the set of the CORDEX summer data produced by INERIS-WRF331F model. The reasons for selecting this particular model were: (a) It provides one of the most complete model datasets in CORDEX database and (b) the simulation data provided are expected to be more coherent with the present detailed atmospheric modeling data that are produced by using the WRF-CHEM model belonging to the same family. Here, the heat wave days frequency occurrence per 5year period is estimated. Furthermore, heat waves occurrence vs clusters were examined to identify the specific clusters associated with heat waves occurrence.

Clusters and Air Quality

Collect existing air quality data (NO_2 , O_3 , PM_{10}) and associate them with the selected clusters. Identify the clusters with elevated concentration for each pollutant.

Representative Days

The next step is to identify the representative day(s) per cluster per the 5-year time period by selecting the day which has the closest distance from the cluster's centroid (Sfetsos et al., 2005) In order to perform air quality simulations and reveal hourly air quality levels for the three clusters that indicate elevated concentrations for NO₂, O₃ and PM₁₀ respectively representatives days were selected. Atmospheric modeling simulations, that include air concentration predictions on the respective representative days, were performed in the following 5year periods: 2016-2020, 2021-2025, 2031-2035)

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 16/269

3.5 The Atmospheric Modeling

3.5.1. The Models

Details concerning atmospheric modeling are given in ICARUS WP3 Milestone M3.2

WRF-Chem is the Weather Research and Forecasting (WRF) model coupled with Chemistry. The model simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. The model is used for investigation of regional-scale air quality, field program analysis, and cloud-scale interactions between clouds and chemistry. The WRF-Chem (version 3.6.1, August 2014) has been used for the present studies. The model overview with the available pre-processors is shown in Figure 3.3.

Figure 3.3: The WRF-Chem modeling system overview

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 17/269

The WRF-Chem model supports horizontal nesting (Figure 3.4) that allows resolution to be focused over a region of interest by introducing an additional grid (or grids) into the simulation. In the 3.6.1 version, only horizontal refinement is available: there is no vertical nesting option.

Figure 3.4: Nest example

3.5.2 The Grids

The option of two level multiple horizontal nesting has been adopted. An outer grid with dimensions 12x12km has been implemented over Europe as shown in Figure 3.5. The Grid Projection has been defined as Lambert conformal Conic with lat0 = 35° lat1= 65° standard lat= 52° standard lon= 10° consisting of 303 x 303 cells. On the urban scale nine (9) nests with dimensions 2x2km have been used consisting of 42x42 grid cells each. As a notice WRF-Chem assumes a spherical model of Earth with 6370000m radius.

Figure 3.5: The Grids. The vertical 27 - level grid extends from the surface to about 20 km

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities			
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public	
		Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 18/269

3.6 The Emission Inventories

For the present analysis the following emission inventory data have been utilized:

EDGAR HTAP V2

It includes annual data for the year 2010 with 0.1x0.1 deg spatial resolution over Europe. It covers the pollutants NO_x, NH₃, PM₁₀, PM_{2.5}, SO₂, CO and NMVOC. HTAP V2 uses nationally reported emissions combined with regional scientific inventories in the format of sector-specific gridmaps. The gridmaps are complemented with EDGARv4.3 data for those regions where data are absent. The global gridmaps are a joint effort from US-EPA, the MICS-Asia group, EMEP/TNO, the REAS and the EDGAR group to serve in the first place the scientific community for hemispheric transport of air pollution. The static version is available on this EDGAR website, but also the GEIA data portal and the ECCAD server.

The data were downloaded from http://aftp.fsl.noaa.gov/divisions/tag/global_emissions/

according to WRF-Chem manual guidance.

More details can be found in http://edgar.jrc.ec.europa.eu/http_v2/

The University of Stuttgart (USTUTT) High Resolution Emission Inventory Data

It includes annual data for years 2015, 2020, 2030, with 1x1km spatial resolution over Europe. This work has been performed under ICARUS WP2 Activities

It covers the pollutants NO_X, NH₃, PM₁₀, PM_{2.5}, SO₂, and NMVOC in five (5) sectors (agriculture, energy, industry, residential, transport). It consists of following Emission Inventories.

- One top down emission inventory covering all EU28 countries. The projection of the data is on the European Grid based on ETRS89 Lambert Azimuthal Equal Area coordinate reference system.
- Nine (9) bottom up emission inventories covering the nine (9) abovementioned ICARUS cities. Grid cell geographic coordinates are provided for each grid cell. The cities covered are Stuttgart, Basel and Brno. Grid cell geographic coordinate (latitude, longitude) are provided for each grid cell.

More details can be found in Deliverables D2.1 and D2.2.

3.7 Benzo(a)pyrene in PM

Benzo(a)pyrene (BaP) is the most widely investigated PAH as a marker for the carcinogenic risk (IARC, 2012) of PAHs in ambient air. The Air Quality European directive (EU, 2004) sets a target value for ambient air concentration of BaP in order to avoid, prevent and reduce harmful effects of PAHs on human health and the environment. Around 90% or more of BaP in ambient air is adsorbed onto aerosols and around 10% or less is in the gas phase (Guerreiro et al., 2016). The target value for BaP (measured in PM_{10}) for the protection of human health is set at 1 ng/m³ (EU, 2004) as an annual mean. The World Health Organization (WHO) has not recommended a guideline value for BaP. The WHO reference level of 0.12 ng/m³ was estimated assuming WHO unit risk (WHO, 2010) for lung cancer for PAH mixtures and an

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public				
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 19/269				

acceptable risk of additional lifetime cancer risk of approximately 1 in 100 000 (ETC/ACM, 2011).

BaP is a PAH mainly found in fine PM. The Air Quality Directive (EU, 2004) prescribes that BaP concentration measurements should be made in the PM_{10} fraction. Despite this requirement, available data in any PM fraction were used in the current analysis. The justification is that most of the BaP is present in $PM_{2.5}$ and not in the coarser fraction of PM_{10} , and the gaseous fraction of the total BaP is quite small (EEA, 2016).

The BaP/PM ratios were produced from the available concentrations reported in various European peer-reviewed studies, as shown in Table 3.3. As it can be seen from the studies that report BaP in both PM_{2.5} and PM₁₀, more than 93% of BaP (93-100% range) is present in the PM_{2.5} fraction. Due to the above, cumulative distribution function (CDF) of the BaP/PM2.5 ratios was plotted in a diagram as shown in Figure 3.6. Probability distribution fitting was applied. Between gamma and normal distribution, the gamma distribution was found to best fit the data. The above analysis led to the following statistical data for the BaP/PM2.5 ratios:

Mean value: 8.2E-05

25% percentile: 2.3E-05

75% percentile: 11E-05

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities

S	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 20/269

Table 3.3: BaP and PM concentrations and BaP/PM ratios from various European studies

Location	Sampling period	PM2.5 (μg/m ³)	PM10 (μg/m ³)	BaP in PM2.5	BaP in PM10	BaP/PM2.5	BaP/PM10	Reference
				(ng/m³)	(ng/m³)			
Zabrze (Poland) urban background	oct-dec 2007	41.31	46.29	19.19	19.32	4.65E-04	4.17E-04	W.R. Kozlowska et al., 2013
Duisburg (Germany) urban background	autumn	19	26	1.05	1.1	5.53E-05	4.23E-05	
Prague (Czech Republic) urban background	winter	30	36	3.03	3.15	1.01E-04	8.75E-05	
Amsterdam (The Netherlands) urban background	winter	27	36	0.33	0.35	1.22E-05	9.72E-06	K. Saarnio et al., 2008
Helsinki (Finland) urban backgroundsping	sping	11	24	0.14	0.15	1.27E-05	6.25E-06	
Barcelona (Spain) urban background	spring	19	42	0.08	0.08	4.21E-06	1.90E-06	
Athens (Greece) urban background	summer	26	55	0.05	0.05	1.92E-06	9.09E-07	
Taranto (Italy) Tamburi station crowded urban	winter		126		5.63		4.47E-05	
Taranto (Italy) Tamburi station crowded urban	summer		61		0.83		1.36E-05	
Taranto (Italy) Statte station urban	winter		40		0.76		1.90E-05	
Taranto (Italy) Statte station urban	summer		48		0.29		6.04E-06	P. Di Filippo et al., 2010
Taranto (Italy) Palagiano station rural/background area	winter		68		0.34		5.00E-06	
Taranto (Italy) Palagiano station rural/background area	summer		42		0.13		3.10E-06	

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities

WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 21/269

Zelzate (Belgium) industrial	sep 2006- sep 2007		34.2		0.66		1.93E-05	
Borgerhout (Belgium) urban background	sep 2006- sep 2007		33.7		0.85		2.52E-05	J. Vercauteren et al., 2011
Aarschot (Belgium) rural background	sep 2006- sep 2007		27.6		0.61		2.21E-05	_
Detached-house area 1 DH1 Vartiokylä (Finland)	2009–2015	7.5		0.6		8.00E-05		
Detached-house area 3 DH3 Päiväkumpu (Finland)	2011	10.4		1.2		1.15E-04		
Detached-house area 4 DH4 Kattilalaakso (Finland)	2012	8.2		0.6		7.32E-05		
Detached-house area 5 DH5 Kauniainen (Finland)	2013	7.1		0.4		5.63E-05		
Detached-house area 6 DH6 Tapanila (Finland)	2013	8.8		1		1.14E-04		
Detached-house area 7 DH7 Ruskeasanta (Finland)	2014	10.8		1		9.26E-05		H. Hellen et al., 2017
Detached-house area 8 DH8 Lintuvaara (Finland)	2015	7.1		0.9		1.27E-04		
Street canyon 2 SC2 Töölöntulli (Finland)	2010	13		0.3		2.31E-05		
Street canyon 3 SC3 Mäkelänkatu (Finland)	2015	8		0.2		2.50E-05		
Urban background UB Kallio (Finland)	2007–2015	7.8		0.3		3.85E-05		
Rural background 1 RB1 Virolahti (Finland)	2007–2015	6.1		0.2		3.28E-05		-
Remote background RE Pallas (Finland)	2009–2015	3.7		0.03		8.11E-06		

3	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public				
TOAROS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 22/269				

Kaunas (Lithuania) location 1, urban traffic	jan-feb 2009	34.5		6.2		1.80E-04	L. Kliucininkas et al., 2011
Kaunas (Lithuania) location 2, urban traffic	jan-feb 2009	36.7		3.2		8.72E-05	
Virolahti (Finland) regional background	winter 2006	6.3	8.2	0.69	0.73	1.10E-04	U. Makkonen et al., 2010

*	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public				
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 23/269				

Figure 3. 6: Cumulative distribution function of the BaP/PM2.5 ratios and distribution fitting

3.8 The Emission Trends Influence

As it has been pointed out above, the air quality levels at a certain location, are affected not only from the weather patterns but also from the relevant emissions and their associated sources. The emission inventories are changing with respect to time reflecting the evolution of new technologies, the implementation of new European and national relevant policies, changes of life style etc. In the ICARUS Project, the USTUTT emission inventories derived for the years 2015,2020 and 2030 reflect such changes.

The emission inventory changes are expected to affect the air pollutant concentrations levels. In order to illustrate such an effect, the representative days for the clusters with elevated air pollutants concentrations in the period 2031-2035 have been simulated with the three available emission inventories: 2015,2020 and 2030. In this case, the air concentration differences will depend only on emission inventory differences.

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities

WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 24/269

3.9 Green House Gases (GHGs)

3.9.1. The Model

WRF-Chem is used for GHG Modeling. The domain has the same characteristics with the Europe domain used in the Air Quality Modeling. The grid used has dimensions of 304x304 cells with 12x12 km spacing covering Europe area.

The model was initiated with meteorological data from NCAR CESM Global Bias-Corrected CMIP5 Output to Support WRF/MPAS Research dataset using the RCP4.5 Future Scenario. The data have 6-hour temporal frequency and temporal range from 01-01-1951 to 31-12-2100.

Variables included are:

Air Temperature	Boundary Layer Winds	Geopotential Height	Humidity
Sea Ice	Sea Level Pressure	Sea Surface	Skin
Concentration		Temperature	Temperature
Snow Water	Soil Moisture/Water	Soil Temperature	Surface
Equivalent	Content		Pressure
Surface Winds	Upper Air Temperature	Upper Level Winds	

 CO_2 and CH_4 anthropogenic emissions, provided by USTUTT, for the years 2015,2020 and 2030 are used as input data. WRF-Chem simulated CO_2 and CH_4 as gas tracers. The simulation duration is 48 hours including 24 hours spin up time.

Results are extracted from the grid cell (12x12 km) covering:

- a. the center of each Icarus city region, and
- b. the three remote GHG monitoring location given in Plateu Rosa (IT), Jungfraujoch (CH) and Hohenpeissenberg (D) in which hourly data for CO₂ and CH₄ exist (<u>https://ds.data.jma.go.jp/gmd/wdcgg/</u>)

3.9.2. The Approach

It is well known that the concentrations of the major greenhouse gases during the industrial era have been increased directly or indirectly due to human activities. As a result, their background concentrations in atmosphere have been already increased considerably. The adopted scenario to study the climatic change in the future have shown such this trend is likely to continue. For example, Figures 3.7 (a) and (b) show how the background concentrations over Europe for the main greenhouse gases CO₂ and CH₄ evolve in the period 2001-2050 under climatic scenario RCP4.5. (http://www.iiasa.ac.at/web-apps/tnt/RcpDb/dsd?Action=htmlpage&page=about)

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
	ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public			
		Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 25/269			

Figure 3.7: RCP4.5 Climatic scenario: the CO_2 and CH_4 concentrations

The GHG concentrations with respect to space and time are expected to deviate from the abovementioned background concentrations mainly due to current anthropogenic emissions as well as meteorological local variability. The next question is how such deviations can be combined with the background concentrations to provide the real GHG concentration levels on local and hourly scale.

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public				
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 26/269				

A series of daily simulations estimating the CO_2 and CH_4 concentration difference variability at the abovementioned selected sites have been performed and the results are shown in Figures 3.8 (a) and (b). The Plateau Rosa Station seems to represent reliably enough the background concentrations indicating no significant influence from the current anthropogenic emission rates.

Average Daily

					ΔC	02 Con	centrati	ons					
60.00													
40.00													
20.00		. Les altes III		ih. Itali	halls at \$5		و الله الله						2
0.00	Thessalo niki	Athens	Madrid	Stuttgart	Ljubljana	Brno	Milano	Basel	Copenha gen	Hohenpei ssenberg	Plateau Rosa	Jungfrauj och	2
2016-01-16	1.79	2.69	46.71	8.29	3.73	2.40	16.02	11.62	24.64	3.97	0.20	0.35	
2017-07-21	1.65	1.63	4.24	10.76	2.67	4.14	6.45	21.08	4.89	4.10	0.99	1.69	
■ 2018-01-12	4.39	8.46	2.37	6.82	3.69	2.43	13.01	2.89	25.87	1.89	0.97	1.53	
2019-01-20	1.84	2.46	1.14	4.81	3.84	2.80	7.99	4.47	11.12	0.93	0.58	0.74	
2019-03-19	0.36	4.45	7.37	5.72	3.14	1.67	18.55	4.37	56.82	1.28	1.09	2.90	•
2019-04-11	1.08	2.88	5.98	3.04	2.41	3.58	5.68	1.77	13.21	1.82	0.31	0.43	
2019-07-02	0.92	1.87	6.41	10.50	1.66	2.31	6.60	10.31	19.71	3.25	0.51	0.91	
2019-07-30	1.32	4.44	5.42	8.70	3.00	8.26	5.70	5.47	13.76	5.61	0.26	0.70	
2019-10-29	4.11	8.97	8.07	3.64	3.58	3.43	11.14	1.85	9.40	1.75	0.39	0.47	
2020-08-22	1.31	4.86	5.65	38.36	1.95	2.63	7.21	23.96	13.53	11.93	0.61	1.07	
2020-10-17	1.86	3.31	14.62	7.92	4.55	5.78	20.59	6.25	9.78	1.83	0.4	0.72	
2021-02-09	0.99	2.86	16.08	17.22	4.07	5.73	15.81	11.51	7.15	2.14	0.64	0.59	= 2
2022-08-20	1.71	6.92	4.03	7.26	2.44	4.00	5.20	4.92	13.31	2.12	0.44	0.55	≡2
2034-07-30	0.27	6.67	4.47	9.96	1.75	9.56	9.55	15.86	4.45	3.72	1.08	1.9	
■ 2035-02-14	0.27	6.67	4.47	9.96	1.75	9.56	9.55	15.86	4.45	3.72	1.08	1.9	

						ΔC	H4 Con	centrati	ons					
	12.00													
	10.00			1										
-	8.00													
hdd	6.00													2
	4.00													2
	2.00			I. Dallanda	hall h	i dat a			hatihi	l dute	line and the line			■2
	0.00	Thessalon								Copenhag	Hohenpei	Plateau	Jungfraui	2
		iki	Athens	Madrid	Stuttgart	Ljubljana	Brno	Milano	Basel	en	ssenberg	Rosa	och	- 2
2016	5-01-16	1.09	1.62	9.54	2.13	1.83	1.28	6.16	6.30	2.46	1.64	0.07	0.18	2
2017	7-07-21	4.63	1.23	1.19	1.89	1.99	1.73	3.68	3.53	0.69	1.45	0.50	0.90	2
2018	3-01-12	7.73	6.78	1.21	1.73	4.02	2.17	6.55	2.00	1.77	1.66	0.52	0.74	2
2019	-01-20	4.11	2	0.55	1.26	3.52	1.19	4.14	2.35	2.11	0.85	0.32	0.38	= 2
2019	-03-19	1.4	3.35	1.5	1.57	3.14	1.05	7.35	2.08	2.62	0.79	0.76	1.51	■2
2019	-04-11	3.33	2.93	1.37	0.84	2.07	2.36	2.81	1.1	1.51	0.89	0.22	0.43	
2019	9-07-02	2.06	1.56	0.96	1.89	2.47	1.69	2.85	2.15	2.04	1.94	0.17	0.42	- 4
2019	9-07-30	4	3.82	0.77	2.15	2.76	0.96	3.75	3.54	1.86	3.25	0.17	0.64	2
2019	-10-29	8.91	6.64	1.4	0.76	1.47	2.1	4.55	0.98	1.06	0.76	0.24	0.36	2
2020	-08-22	2.83	3.76	0.99	2.63	2.07	3.29	3.26	2.67	1.66	2.31	0.22	0.38	2
2020)-10-17	3.73	2.71	4.69	2.14	2.28	4.9	8.73	4.14	1.57	1.4	0.18	0.48	= 2
2021	L-02-09	2.09	2.29	3.21	3.98	4.27	3.15	5.50	5.74	2.22	1.91	0.25	0.25	= 2
2027	2-08-20	3.30	6.49	0.81	1.52	2.38	2.99	2.85	2.03	1.60	1.26	0.25	0.58	- 2
2034	1-07-30	1.31	4.98	0.8	2.04	1.29	1.03	4.68	2.82	0.8	1.79	0.33	0.61	
2035	5-02-14	1.31	4.98	0.8	2.04	1.29	1.03	4.68	2.82	0.8	1.79	0.33	0.61	

Average Daily CH4 Concentrations

Figure 3.8: The current anthropogenic emissions contributions to CO₂ and CH₄ concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public					
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 27/269					

Such a result could help to investigate to what degree there is a need (a) for correction of background annual concentrations values based on the Plataeu Rosa historical data and (b) for adding temporal profile in terms of days/hours in the annual background concentrations when estimating local real concentrations. This can be done by looking at the Plateau Rosa observation data from the historical period.

Figures 3.9 (a) and (b) show the comparisons of CO_2 and CH_4 annual observation data during the period 1993-2017 with the RCP4.5 climatic scenario data.

Figure 3.9: The Plateau Rosa Station: CO₂ and CH₄ yearly concentrations . The observed vs the RCP4.5 climatic scenario data for the historical period (1993-2017)

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public					
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 28/269					

For CO_2 concentrations there is an almost perfect correlation. In the case of CH_4 it seems to exist a 5% underestimation which for the purposes of this study is considered rather insignificant.

Based on 2017 hourly observation data in Plateau Rosa station, the daily and diurnal profiles of CO_2 and CH_4 concentrations have been derived. The results are shown in Figures 3.10(a), (b) and Figures 3.11 (a), (b) respectively

Figure 3.10: The Plateau Rosa Station: The Daily Concentration variation profile for the year 2017

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public					
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 29/269					

Figure 3.11: The Plateau Rosa Station: Diurnal Concentration variation profile for the year 2017

The variations observed usually do not exceed the 2.5% of the respective mean values and therefore are considered insignificant.

Thus, the annual background values given under RCP4.5 scenario and shown in Figures 3.7 (a) and (b) are taken as hourly background values in the present modeling for CO_2 and CH_4 local concentrations.

	D3.3: Report on AQ and GHGs concentration at	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public						
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 30/269						

4. Results and Discussion

4.1 Air Quality data

We searched for historical air quality data for the period 2001-2015. The search was done through HEALS EDMS Database (https://heals.uowm.gr/). The original source of the derived data was EEA Database (https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-7). The selection of the station was done on the ground that is has the most complete data (NO₂, O₃, PM₁₀). If more than one station had available data for the 2001-2015 period, the averaged values for the area were calculated. In Table 4.1 are presented the location of the selected stations per city area.

City area	Meteorological station	Longitude	Latitude
Stuttgart	DEBW011	9.172506	48.825575
Brno	CZOBBND	16.597271	49.205463
Basel	CH0008A	7.583270	47.541084
	CH0029A	7.594703	47.567019
	CH0017A	7.582075	47.565911
Athens	GR0039A	23.819418	37.995106
	GR0030A	23.647511	37.943287
	GR0002A	23.726843	37.978207
	GR0035A	23.776886	38.069633
	GR0022A	23.787357	38.030838
Thessaloniki	GR0018A	22.945288	40.633774
	GR0019A	22.959303	40.578917
	GR0020A	22.893438	40.673550
	GR0046A	22.802366	40.657845
	GR0047A	23.031681	40.588931

Table 4.1: Locations of the meteorological stations per city

Milan	IT0705A	9.195833	45.462780
	IT1017A	9.247778	45.498890
Madrid	ES1532A	-3.651389	40.388056
	ES1426A	-3.645278	40.408056
	ES0126A	-3.731944	40.394722
Copenhagen - Roskilde	DK0034A	12.571114	55.669167
	DK0045A	12.561400	55.700279
	DK0030A	12.553336	55.698334
Ljubljana	SI0003A	14.517222	46.065834

4.2 Stuttgart

4.2.1 PCA results

The PCA analysis applied to the Stuttgart data has led to the following results.

Three (3) principal components have been identified as factors for the cluster analysis. Principal Components (PC) explaining 70.96% of the total variance in the initial data. Table 4.2.1 shows the factors loadings after the varimax rotation and the physical interpretation of each PCs.

Factor 1 explains 32.70% of the total variance and contains the 2 temperature variables, mean, daily temperature range and the down ward short-wave radiation.

Factor 2 explains 22.41% of the total variance and contains the atmospheric boundary layer thickness, the U wind component and a negative sign of surface pressure.

Factor 3 explains 15.84% of the total variance and contains V wind component and a negative sign of Relative Humidity and precipitation.

Meteorological parameter	Princip	Principal Components					
	1	2	3				
Downward short-wave surface radiation	.886						
Temperature	.820						
Temperature Range	.763						
Atmospheric boundary layer thickness		.818					
Surface pressure		700					
U wind		.641					
RH			757				
Precipitation			717				
V wind			.694				

Table 4.2.1: The Principal Components results

4.2.2 Clustering results

Cluster description and trends

As explained in 3.4.4 the selected clusters of the city of Stuttgart are 10. In Figure 4.2.1 are shown the number of days per cluster, where clusters 4,5 and 9 have the most days and cluster 3, 7 and 8 have the less, especially the last one. The monthly distribution per cluster is presented in Table 4.2.2 and in Figure 4.2.2. By dividing the year in two periods, cold and warm, clusters 1,3,7,9 and 10 could be categorized in cold period and on the other hand clusters 2,4,5 and 8 in warm period. Cluster 6 seems to have days which spread during the whole year.

	D3.3: Report on AQ and GHGs concentration at	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public						
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 33/269						

Figure 4.2.1: Number of Days per cluster

							Mc	onth					
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
cluster10	1	411	336	222	50	9	2	0	0	53	264	318	341
	2	1	10	103	423	482	290	82	199	307	107	15	1
	3	242	174	155	143	56	17	4	16	73	152	221	235
	4	0	0	14	188	288	380	640	608	291	16	1	0
	5	0	0	7	53	305	509	570	513	179	4	0	0
	6	124	147	224	222	245	121	61	80	223	231	113	129
	7	194	195	181	125	42	12	2	9	41	145	200	268
	8	2	14	19	28	82	159	191	114	39	27	10	8
	9	460	366	249	62	12	5	0	2	79	259	416	472
	10	116	170	376	206	29	5	0	9	215	345	206	96

Table 4.2.2: Monthly distribution per cluster

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public					
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 34/269					

Figure 4.2.2: Visualized bar chart of monthly distribution per cluster

A trend analysis of the 5-year frequency of each cluster (Figure 4.2.3). There is an evidence that in clusters 5, 7 and 9 there is a linear increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 6 and 10 show a linear decrease in frequency occurrence. In the rest clusters no clear trends could be pointed out.

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public				
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 35/269				

Figure 4.2.3: Cluster 1-10 frequency trends

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public				
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 36/269				

Cluster characterization

The clusters' implementation is based on the mean values of weather parameters which are displayed in Table 4.2.3.

From the cold period clusters 1 and 10 are characterized by low atmospheric boundary layer and higher surface pressure. Wind speed is almost equal but cluster 10 is a little bit warmer, where mean temperature and shortwave radiation are higher. Clusters 3,7 and 9 are described by high atmospheric boundary layer and lower surface pressure. All of them seems to have strong winds while 3 and 9 showed higher precipitation rate and higher relative humidity values. In warm period, clusters 4 and 5 are the warmest with the highest short-wave radiation. Cluster 8 has the higher precipitation and relative humidity. The atmospheric boundary level is higher in cluster 2, which seems to be the less warm cluster and lower in cluster 8.

	Clusters									
	1	2	3	4	5	6	7	8	9	10
Parameters	Mean (SD)									
Temperature (°C)	0,66 (5,31)	10,34 (4,45)	5,91 (3,72)	18,16 (5,09)	16,83 (4,81)	6,3 (5,95)	8,57 (4)	14,97 (6,33)	3,88 (3,8)	6,77 (5,53)
Daily Temperature Range (°C)	5,19 (2,04)	6,99 (1,75)	4,24 (1,77)	10,94 (1,72)	8,25 (1,72)	4,56 (1,73)	5,65 (2,22)	5,42 (2,11)	4,5 (1,86)	9,17 (2,11)
Relative Humidity (%)	87,63 (5,96)	76,83 (5,01)	80,78 (4,44)	68,27 (7,23)	81,62 (4,48)	88,74 (4,21)	67,14 (8,64)	89,43 (4,22)	81,64 (5,12)	69,65 (9,73)
Surface Pressure (Pa)	97437, 4 (947,6 9)	96175, 69 (679,2 6)	95303, 29 (858,1 8)	96853, 21 (591,5 8)	96530, 95 (593,3 4)	96209, 83 (820,7 6)	95905, 83 (884,8 2)	96001, 88 (722,6 3)	96387, 93 (879,1 8)	97494, 13 (812,6 5)
Precipitation (kg/m2/s)	0,0000 12 (0,000 016)	0,0000 34 (0,000 031)	0,0000 83 (0,000 054)	0,0000 07 (0,000 014)	0,0000 59 (0,000 048)	0,0000 65 (0,000 045)	0,0000 22 (0,000 024)	0,0002 38 (0,000 099)	0,0000 24 (0,000 023)	0,0000 03 (0,000 009)
Downward Short Wave Radiation	81,5 (42,44)	214,12 (63,59)	88,08 (62,56)	300,26 (49,33)	245,22 (51,3)	97,34 (56,22)	104,95 (71,23)	147,5 (76,81)	72,76 (40,15)	152,53 (62,54)
u wind component (m/s)	1,39 (2,59)	4,01 (1,81)	8,13 (2,23)	-1,25 (2,56)	0,18 (2,25)	2,76 (2,62)	6,74 (2,41)	1,29 (2,85)	5,49 (2,13)	0,64 (2,72)
v wind component (m/s)	-0,21 (1,6)	0,56 (1,75)	1,43 (2,08)	0,23 (1,46)	-1,2 (1,4)	-1,79 (1,83)	4,18 (1,61)	-2,15 (1,94)	1,49 (1,72)	1,34 (1,82)
V wind (m/s)	2,92 (1,64)	4,54 (1,47)	8,55 (2,09)	2,81 (1,55)	2,6 (1,31)	4,18 (1,88)	8,23 (1,9)	3,77 (1,99)	6,05 (1,8)	3,18 (1,66)
Atmospheric Boundary Layer Thickness (m)	318,77 (133,7 7)	748,26 (155,1 2)	989,9 (205,5 7)	645,15 (132,7 4)	545,35 (126,1)	477,05 (158,6 6)	1042,5 2 (218,6 6)	472,45 (154,4 6)	670,55 (156,4 1)	419,76 (162,0 7)

Table 4.2.3: Summary of the 10 clusters
ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities								
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public						
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 37/269						

In addition to the previous Table 4.2.3, Figure 4.2.4 presents the mean normalized (z-score) variables of each cluster, respectively showing the differences of the parameters per cluster.

Figure 4.2.4: Normalized variables (z-score) averaged for each cluster

Daily, 10-meter from ground level, wind data were used to create the wind roses per each cluster as they are shown in Figures 4.2.5-4.2.14. Each wind direction distribution per cluster is presented in more details in Table 4.2.4.

Cluster 1: Around 40% of the daily wind directions were from the WSW, W and WNW direction with moderate wind speeds, mostly up to 6m/s. Weak wind speeds varied in the E direction.

Cluster 2: Around 60% of the daily wind directions were from the WSW and W direction with wind speeds, mostly up to 7m/s. Stronger winds up to 10m/s were recorded in WNW direction.

Cluster 3: Up to 70% of the daily wind directions were from the WSW and W direction with wind speeds, mostly up to 12m/s.

Cluster 4: Around 45% of the daily wind directions were from the ENE, E and ESE direction with moderate wind speeds, mostly up to 6m/s. Weak wind speeds varied in the W direction.

Cluster 5: Winds directions ranged from WSW to ENE directions. These directions don't necessarily indicate the prevailing wind in this cluster. Wind speeds were mostly up to 5m/s.

Cluster 6: Around 60% of the daily wind directions were from the W, WNW and NW direction with wind speeds, mostly up to 8m/s.

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities									
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public							
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 38/269							

Cluster 7: 85% of the daily wind directions were from the WSW and SW direction with wind speeds, mostly up to 12m/s.

Cluster 8: Winds directions ranged from W to ENE directions. These directions don't necessarily indicate the prevailing wind in this cluster. Wind speeds were mostly up to 8m/s.

Cluster 9: Most of the winds came from W and WSW with speeds up to 12m/s.

Cluster 10: Up to 75% of the daily wind directions were from the WSW up to 10m/s and SW direction with wind speeds, mostly up to 7m/s. Weak wind speeds varied in the E to S direction.

Figure 4.2.5: Wind Rose -Cluster 1

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities								
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public						
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 39/269						

Figure 4.2.7: Wind Rose - Cluster 3

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities								
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public						
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 40/269						

Figure 4.2.8: Wind Rose - Cluster 4

Figure 4.2.9: Wind Rose - Cluster 5

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities								
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public						
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 41/269						

Figure 4.2.11: Wind Rose - Cluster 7

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities								
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public						
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 42/269						

Figure 4.2.13: Wind Rose - Cluster 9

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities								
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public						
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 43/269						

Figure 4.2.14: Wind Rose - Cluster 10

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities WP3 Integrated atmospheric modelling for connecting pressures to the Security: Public environment to concentrations at the regional and urban scales Author(s): AUTH, USTUTT, CMCC, NCSRD Version: Final Page 44/269

			16wind	b															Total
			S	SSW	SW	WSW	W	WNW	NW	NNW	Ν	NNE	NE	ENE	E	ESE	SE	SSE	
cluster	1	Count	55	79	149	263	374	256	153	116	69	64	78	72	93	81	53	51	2006
		%	2,7%	3,9%	7,4%	13,1%	18,6%	12,8%	7,6%	5,8%	3,4%	3,2%	3,9%	3,6%	4,6%	4,0%	2,6%	2,5%	100,0%
	2	Count	21	61	256	595	693	284	56	20	3	2	5	5	3	4	6	6	2020
		%	1,0%	3,0%	12,7%	29,5%	34,3%	14,1%	2,8%	1,0%	0,1%	0,1%	0,2%	0,2%	0,1%	0,2%	0,3%	0,3%	100,0%
	3	Count	2	12	101	608	656	106	3	0	0	0	0	0	0	0	0	0	1488
		%	0,1%	0,8%	6,8%	40,9%	44,1%	7,1%	0,2%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	100,0%
	4	Count	99	107	159	149	132	76	60	69	54	65	153	298	481	286	136	102	2426
		%	4,1%	4,4%	6,6%	6,1%	5,4%	3,1%	2,5%	2,8%	2,2%	2,7%	6,3%	12,3%	19,8%	11,8 %	5,6%	4,2%	100,0%
	5	Count	15	32	57	128	220	258	234	200	189	180	229	225	105	37	24	7	2140
		%	0,7%	1,5%	2,7%	6,0%	10,3%	12,1%	10,9%	9,3%	8,8%	8,4%	10,7%	10,5%	4,9%	1,7%	1,1%	0,3%	100,0%
	6	Count	6	11	46	117	320	547	338	225	112	90	56	27	13	4	3	5	1920
		%	0,3%	0,6%	2,4%	6,1%	16,7%	28,5%	17,6%	11,7%	5,8%	4,7%	2,9%	1,4%	0,7%	0,2%	0,2%	0,3%	100,0%
	7	Count	6	127	487	706	84	0	1	0	0	0	0	0	0	0	0	3	1414
		%	0,4%	9,0%	34,4%	49,9%	5,9%	0,0%	0,1%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,2%	100,0%
	8	Count	2	1	10	27	89	100	115	100	71	76	58	30	7	5	2	0	693
		%	0,3%	0,1%	1,4%	3,9%	12,8%	14,4%	16,6%	14,4%	10,2%	11,0%	8,4%	4,3%	1,0%	0,7%	0,3%	0,0%	100,0%
	9	Count	18	90	350	947	819	131	9	3	1	2	1	0	0	3	3	5	2382
		%	0,8%	3,8%	14,7%	39,8%	34,4%	5,5%	0,4%	0,1%	0,0%	0,1%	0,0%	0,0%	0,0%	0,1%	0,1%	0,2%	100,0%
	10	Count	132	216	314	242	121	51	58	35	24	29	43	66	103	131	118	90	1773
		%	7,4%	12,2%	17,7%	13,6%	6,8%	2,9%	3,3%	2,0%	1,4%	1,6%	2,4%	3,7%	5,8%	7,4%	6,7%	5,1%	100,0%
Total		Count	356	736	1929	3782	3508	1809	1027	768	523	508	623	723	805	551	345	269	18262
		%	1,9%	4,0%	10,6%	20,7%	19,2%	9,9%	5,6%	4,2%	2,9%	2,8%	3,4%	4,0%	4,4%	3,0%	1,9%	1,5%	100,0%

Table 4.2.4: 16 Wind Direction distribution per cluster

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARL								
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public						
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 45/269						

Clusters and local Heat Waves

In Figures 4.2.15 and 4.2.16 are presented the heat waves occurrence per 5-year period and per cluster. The 5-year period 2041-2045 shows the highest number of heat waves, while the next 5-year period shows a decrease. The most heat waves were associated with clusters 4 and 5 which correspond to clusters with days belong to warm period (see Table 4.2.2).

Figure 4.2.16: Heat Waves per cluster

Clusters versus Air Quality level

As it can be seen in Table 4.1 one observation station has been used for the present analysis. The station descriptive statistics for NO₂, O₃ and PM₁₀ is given in Table 4.2.5.

Та	Table 4.2.5: Air pollutants descriptive statistics											
		NO2	03	PM10								
Mean		43,7392	35,6998	25,8738								
Std. Deviation		17,65519	22,73449	15,60840								
Minimum		4,05	0,10	2,50								
Maximum		142,99	119,09	134,00								
Percentiles	5	17,6490	2,7784	8,0982								
	25	31,5415	16,8260	15,0000								
	50	42,1890	35,0430	22,0000								
	75	53,5210	51,3330	33,0000								
	95	74,1955	74,9640	55,9768								

ICARUS	D3.3: Report on AQ and GHGs concentration at the grou	ARUS cities	
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 46/269

Table 4.2.6 presents the pollutants' concentrations per cluster. Higher mean NO_2 concentrations are observed in clusters 1,7 and 9. Higher mean O_3 concentrations are observed in clusters 2,4,5 and 8. Higher mean PM_{10} concentrations are observed in clusters 1,7 and 9.

	Clusters												
	1	2	3	4	5	6	7	8	9	10			
Polluta	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean			
nts	(SD)	(SD)	(SD)	(SD)	(SD)	(SD)	(SD)	(SD)	(SD)	(SD)			
PM10	30,07	22,49	25,65	20,97	21,06	26,96	31,17	20,19	29,53	28,2			
(µg/m3)	(18,08)	(11,3)	(15,55)	(9,82)	(9)	(15,48)	(19,47)	(8,97)	(19,19)	(17,08)			
03	23,56	44,87	25,09	52,04	55 <i>,</i> 65	35,9	20,71	50,2	21,47	27,73			
(µg/m3)	(17,28)	(17,79)	(19,43)	(20,15)	(18,43)	(22,63)	(17,27)	(19,15)	(17,38)	(16,02)			
NO2	47,6	40,25	46,86	38,25	36,97	44,04	49,81	35,93	49,46	46,22			
(µg/m3)	(19,06)	(14,02)	(18,26)	(14,14)	(14,64)	(17,6)	(18,16)	(13,63)	(20,35)	(17,38)			

Table 4.2.6: Summary pollutant concentrations per cluster

The differences in concentrations per cluster are shown in Figures 4.2.17-4.2.19.

Figure 4.2.17: NO₂ concentration statistics per cluster

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities				
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public		
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 47/269		

Figure 4.2.18: O₃ concentration statistics per cluster

*Figure 4.2.19: PM*₁₀ concentration statistics per cluster

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities			
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public	
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 48/269	

Representative Days

In the following Table 4.2.7 are presented the selected RDs per 5-year period and per cluster.

Closest da	days to centroids per clusters											
Sycar per o			1	2	3	4	5	6	7	8	9	10
5 year period	2001-2005	1	2001/02/08	2001/06/07	2004/02/09	2002/06/14	2004/06/14	2001/03/07	2004/02/29	2005/09/05	2001/02/11	2003/03/20
pened	2006-2010	2	2006/11/08	2008/09/01	2009/12/23	2010/08/31	2008/06/20	2007/03/16	2010/10/11	2006/08/28	2007/11/21	2008/11/13
	2011-2015	3	2011/02/25	2015/05/07	2012/10/10	2011/08/17	2011/07/22	2012/10/14	2012/03/17	2015/06/10	2011/10/17	2011/03/15
	2016-2020	4	2019/02/12	2016/05/16	2018/11/15	2016/05/07	2020/08/22	2017/09/11	2020/10/17	2020/04/17	2020/03/05	2019/03/02
	2021-2025	5	2022/02/21	2023/04/30	2023/05/08	2023/08/07	2022/08/20	2022/03/17	2021/02/09	2023/05/20	2022/10/15	2022/11/11
	2026-2030	6	2028/03/13	2027/04/29	2029/12/07	2027/07/30	2030/06/05	2027/09/21	2029/11/10	2030/08/06	2028/10/26	2028/03/27
	2031-2035	7	2035/10/15	2033/04/22	2031/10/09	2033/08/18	2034/07/30	2033/03/22	2035/02/14	2035/06/13	2035/10/13	2031/03/13
	2036-2040	8	2039/11/13	2040/04/27	2036/03/05	2038/06/22	2037/08/18	2037/06/07	2036/10/12	2040/07/06	2039/10/27	2040/03/11
	2041-2045	9	2044/12/25	2045/04/26	2045/02/09	2041/09/06	2041/08/09	2045/09/21	2041/12/29	2044/09/07	2042/10/14	2043/03/27
	2046-2050	10	2049/12/21	2046/08/16	2049/03/03	2050/05/09	2046/07/12	2050/09/24	2050/01/31	2047/07/08	2048/03/18	2050/02/15

Table 4.2.7: Representative days per cluster and 5year period

Selected Clusters and RDs for modeling purposes

Selected RDs will be used to perform targeted weather and air quality simulations within each selected 5-year period estimating hourly/daily concentrations of the priority pollutants to assess the climatic effect on air quality evolution and the characteristics of air quality future episodes. The selection was based on 3-year periods (2016-2020, 2021-2025 and 2031-2035) and on the clusters with the most elevated concentrations of PM₁₀, NO₂ and O₃. In the case of Stuttgart, cluster 5 recorded the most elevated values of O₃ and cluster 7 for the case of NO₂ and PM₁₀. In Table 4.2.8 are presented the selected days which was used for modeling purposes.

Table 4.2.8	RDs for	modeling	purposes
-------------	---------	----------	----------

Period	Cluster 5 (O3)	Cluster 7 (NO2, PM)
2016-2020	2020/08/22	2020/10/17
2021-2025	2022/08/20	2021/02/09
2031-2035	2034/07/30	2035/02/14

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities				
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public		
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 49/269		

4.2.3 Air Quality Modeling results

4.2.3.1 Overall results

In Figure 4.2.20 the daily average concentrations of NO₂, O₃, PM_{10} and $PM_{2.5}$ for selected RDs are presented.

Figure 4.2.20: Daily average concentrations

In Figure 4.2.21 the obtained daily averaged concentrations are compared based on USTUTT and EGDAR HTAP emission inventories respectively. The results seem not to differ significantly.

Figure 4.2.21: Daily average concentrations – USTUTT vs EDGAR HTAP comparison

I CARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities			
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public	
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 50/269	

4.2.3.2 Clusters results

NO₂ Concentrations (Cluster 7)

In Figure 4.2.22, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.2.23. Europe concentration maps, of the day with elevated average concentration, are presented in Figures 4.2.24.

The daily maximum concentrations seem to be very close or exceed the EU and WHO yearly limit of $40\mu g/m^3$. The maximum hourly concentrations being below the limit of $200\mu g/m^3$, show a decreasing trend.

O₃ Concentrations (Cluster 5)

In Figure 4.2.25, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.2.26. Europe concentration maps, of the day with elevated average concentration, are presented in Figures 4.2.27.

The daily average concentrations show an increasing trend with maximum values very close to the WHO 8hr limit of $100\mu g/m^3$. The maximum hourly concentrations exceed this limit as well as the EU 8hr limit of $120\mu g/m^3$.

PM₁₀ Concentrations (Cluster 7)

In Figure 4.2.28, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.2.29. Europe concentration maps, of the day with elevated average concentration, are presented in Figures 4.2.30.

The daily maximum concentrations show maximum values very close to the WHO yearly limit of $20\mu g/m^3$.

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities				
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public		
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 51/269		

NO₂-Cluster 7

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities				
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban	Security:	Public		
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 52/269		

OUTPUT FROM * PROGRAM:WRF/CHEM V3.6.1 MODEL WE = 304 : SN = 304 : Levels = 30 : Dis = 12km : Phys Opt = 10 : PBL Opt = 1 : Cu Opt = 5

> Init: 2021-02-08_00:00:00 Valid: 2021-02-09_12:00:00

EU WRF-Chem

NO2 (ug/m3)

60"N

55"N

50"N

45°N

40"N

35"N

5°W

OUTPUT FROM * PROGRAM/WRF/CHEM V3.6.1 MODEL WE = 304 ; SN = 304 ; Levels = 30 ; Dis = 12km ; Phys Opt = 10 ; PBL Opt = 1 ; Cu Opt = 5

 OUTPUT FROM *
 PROGRAM/WRF/CHEM V3.6.1 MODEL

 WE = 304 ; SN = 304 ; Levels = 30 ; Dis = 12km ; Phys Opt = 10 ; PBL Opt = 1 ; Cu Opt = 5

10°E 15°E 20°E 25°E NO2 (ug/m3)

5 50 95 140 185 230 275 320 365 410 455 500 545 590 635 680 725 770 815 860

5'6

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities				
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public		
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 53/269		

O₃-Cluster 5

Figure 4.2.26: O₃ Hourly concentrations

OUTPUT FROM * PROGRAM.WRF/CHEM V3.6.1 MODEL WE = 304 ; SN = 304 ; Levels = 30 ; Dis = 12km ; Phys Opl = 10 ; PBL Opl = 1 ; Cu Opl = 5

 OUTPUT FROM *
 PROGRAM WRF;CHEM V3.6.1 MODEL

 WE = 304 ; SN = 304 ; Levels = 30 ; Dis = 12km ; Phys Opt = 10 ; PBL Opt = 1 ; Cu Opt = 5

Init: 2034-07-29_00:00:00 Valid: 2034-07-30_18:00:00

EU WRF-Chem

03 (ug/m^3)

60**

55"N

50"N

45°N

407

OUTPUT FROM * PROGRAM:WRF/CHEM V3.6.1 MODEL WE = 304 : SN = 304 : Levels = 30 : Dis = 12km : Phys Opt = 10 : PBL Opt = 1 : Cu Opt = 5

15°E

120 140

5°E

-	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities				
9	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public		
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 55/269		

PM₁₀-Cluster 7

Figure 4.2.28: PM₁₀ Day concentrations

Stuttgart Area Hourly PM10 concentration

Stuttgart Area Hourly PM10 concentration

Figure 4.2.29: PM₁₀ Hourly concentrations

OUTPUT FROM * PROGRAM:WRF:CHEM V3.6.1 MODEL WE = 304 ; SN = 304 ; Levels = 30 ; Dis = 12km ; Phys Opt = 10 ; PBL Opt = 1 ; Cu Opt = 5

OUTPUT FROM * PROGRAM/WRF/CHEM V3.6.1 MODEL WE = 304 ; SN = 304 ; Levels = 30 ; Dis = 12km ; Phys Opt = 10 ; PBL Opt = 1 ; Cu Opt = 5

> Init: 2020-10-16_00:00:00 Valid: 2020-10-17_18:00:00

> > 25°E

180 200 220

10°E 15°E 20°E

PM10 (ug m^-3)

120 140 160

5°E

80

100

Figure 4.2.30:PM₁₀ Europe maps

 D3.3: Report on AQ and GHGs concentration at the	ground level in th	e ICARUS
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
 Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 57/269

PM_{2.5} Concentrations (Cluster 7)

In Figure 4.2.31, the results are presented in terms of concentrations average, daily maximum and hourly maximum. Europe concentration maps are presented in Figures 4.2.33.

The daily maximum concentrations show maximum values well exceeding the WHO yearly limit of $10\mu g/m^3$.

Figure 4.2.31: PM_{2.5} Day concentrations

Figure 4.2.32 presents the estimated BaP daily concentrations contained in $PM_{2.5.}$ All days are above WHO annual limit of 0.12ng/m³ and close to the EU annual limit of 1ng/m³.

Figure 4.2.32: BaP daily concentrations

OUTPUT FROM * PROGRAM/WRF/CHEM V3.6.1 MODEL WE = 304 : SN = 304 : Lovels = 30 : Dis = 12km : Phys Opt = 10 : PBL Opt = 1 ; Cu Opt = 5

OUTPUT FROM * PROGRAM:WRF/CHEM V3.6.1 MODEL WE = 304 ; SN = 304 ; Levels = 30 ; Dis = 12km ; Phys Opt = 10 ; PBL Opt = 1 ; Cu Opt = 5

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

OUTPUT FROM * PROGRAM:WRF/CHEM V3.6.1 MODEL WE = 304 ; SN = 304 ; Lovels = 30 ; Dis = 12km ; Phys Opt = 10 ; PBL Opt = 1 ; Cu Opt = 5 OUTPUT FROM * PROGRAM.WRF/CHEM V3.6.1 MODEL WE = 304 : SN = 304 : Levels = 30 : Dis = 12km : Phys Opt = 10 : PBL Opt = 1 : Cu Opt = 5

Figure 4.2.33: PM_{2.5} Europe maps

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS							
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public					
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 59/269					

4.2.3.3 The Emission Inventory effect

Figures 4.2.34, 4.2.35, 4.2.36 and 4.2.37 illustrate the emission inventory temporal change effect on NO_2 , O_3 , PM_{10} and $PM_{2.5}$ concentration levels respectively. There is a clearly decreasing trend in all pollutants indicating the positive effect on emission reductions intervention.

Figure 4.2.34: NO₂ emission inventory comparison

Figure 4.2.35: O₃ emission inventory comparison

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS							
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public					
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 60/269					

Figure 4.2.36: PM₁₀ emission inventory comparison

Figure 4.2.37: PM_{2.5} emission inventory comparison

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public					
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 61/269					

4.2.4 The GHGs Modeling results

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS							
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public					
	Author(s): A AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 62/269					

4.2.5 Conclusions

For Stuttgart greater area, Clusters 1,3,7,9 and 10 could be categorized in cold period and on the other hand clusters 2,4,5 and 8 in warm period.

In clusters 5, 7 and 9 there is an increasing trend in frequency occurrence through the ten 5-year periods. On the other hand, clusters 6 and 10 show a linear decrease.

The 5-year period 2041-2045 shows the highest number of heat waves, while the next 5-year period shows a decrease. The most heat waves were associated with clusters 4 and 5 which correspond to clusters with days belong to warm period.

Cluster 7 is characterized with elevated NO_2 and PM concentrations whereas cluster 5 with elevated O_3 concentrations.

 NO_2 daily maximum concentrations seem to be very close or exceed the EU and WHO yearly limit of $40\mu g/m^3$. The maximum hourly concentrations being below the limit of $200\mu g/m^3$, show a decreasing trend.

 O_3 daily average concentrations show an increasing trend with maximum values very close to the WHO 8hr limit of $100\mu g/m^3$. The maximum hourly concentrations exceed this limit as well as the EU 8hr limit of $120\mu g/m^3$.

 PM_{10} daily maximum concentrations show maximum values very close to the WHO yearly limit of $20 \mu g/m^3.$

 $PM_{2.5}$ daily maximum concentrations show maximum values well exceeding the WHO yearly limit of $10 \mu g/m^3.$

For all days BaP daily concentrations are above WHO annual limit of 0.12ng/m³ and close to the EU annual limit of 1ng/m³.

There is a clearly decreasing trend in all pollutants indicating the positive effect on emission reductions intervention.

-	D3.3: Report on AQ and GHGs concentration at the	ground level in t	he ICARUS cities
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): A AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 63/269

4.3 Brno

4.3.1 PCA results

The PCA analysis applied to Brno data has led to the following results.

Four (4) principal components have been identified as factors for the cluster analysis (Table 4.3.1). Principal Components (PC) explaining 70.96% of the total variance in the initial data.

Factor 1 explains 32.23% of the total variance and contains the 2 temperature variables, mean, daily temperature range, the down ward short-wave radiation and the RH.

Factor 2 explains 21.07% of the total variance and contains the atmospheric boundary layer thickness and the U wind component.

Factor 3 explains 15.70% of the total variance and contains precipitation and a negative sign of surface pressure.

Factor 4 explains 11.53% of the total variance and contains V wind component.

Meteorological parameter	Principal Components				
	1	2	3	4	
Downward short-wave surface radiation	.894				
Temperature	.859				
Temperature Range	.755				
RH	607				
Atmospheric boundary layer thickness		.837			
U wind		.746			
Precipitation			.869		
Surface pressure			653		
V wind				.947	

Table 4.3.1: The Principal Components results

4.3.2 Clustering results

Cluster description and trends

As explained in 3.4.4 the selected clusters of the city of Brno are 8. In Figure 4.3.1 are shown the number of days per cluster, where clusters 4 and 5 have the most days and cluster 2,3 and 8 have the less, especially the last one. The monthly distribution per cluster is presented in Table 4.3.2 and in Figure 4.3.2. By dividing the year in two periods, cold and warm, clusters 1,2,6,7 and 8 could be categorized in cold period and on the other hand clusters 3,4 and 5 in warm period.

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public					
	Author(s): A AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 64/269					

Figure 4.3.1: Number of Days per cluster

		Month								Total				
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Cluster8	1	270	314	418	208	130	47	12	16	156	296	281	246	2394
	2	348	283	237	23	2	0	0	0	53	286	293	282	1807
	3	27	25	60	88	248	364	264	147	122	80	50	22	1497
	4	0	0	37	290	557	680	747	559	295	22	0	0	3187
	5	2	28	123	296	309	306	499	744	527	187	13	0	3034
	6	245	226	291	356	183	64	14	51	156	224	202	263	2275
	7	495	319	173	55	37	6	5	9	66	231	432	500	2328
	8	163	217	211	184	84	33	9	24	125	224	229	237	1740
Total		1550	1412	1550	1500	1550	1500	1550	1550	1500	1550	1500	1550	18262

Table 4.3.2: Monthl	v distribution	per cluster
10010 4.3.2. 10011011	y aistribution	per cruster

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public				
	Author(s): A AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 65/269				

Figure 4.3.2: Visualized bar chart of monthly distribution per cluster

A trend analysis of the 5-year frequency of each cluster (Figure 4.3.3). There is an evidence that in cluster 4 there is a linear increase in frequency occurrence through the ten 5-year periods and a slight increase in 1 and 5. On the other hand, clusters 3 and 7 show a slight decrease in frequency occurrence. In the rest clusters no clear trends could be pointed out.

Figure 4.3.3: Cluster 1-8 frequency trends

Cluster characterization

The clusters' implementation is based on the mean values of weather parameters which are displayed in Table 4.3.3.

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public					
	Author(s): A AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 67/269					

Table 4.3.3: Summary of the 8 clusters

	Cluster								
	1	2	3	4	5	6	7	8	
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	
Temperature (°C)	3,19	1,77	15,11	17,06	18,32	6,22 (4,78)	2,75 (5,59)	8,04	
	(5 <i>,</i> 95)	(6,56)	(6,77)	(5,84)	(6,39)			(5,2)	
Daily Temperature	4,86	6,82	6,59 (2,45)	8,84 (1,85)	11,82	5,55	5,93	7,81 (2,61)	
Range (°C)	(1,63)	(2,62)			(2,07)	(1,9)	(2,4)		
Relative Humidity	73 (7,83)	77,5 (11,95)	82,38	66,51	61,16	66,9 (7,37)	84,1 (8,16)	70,32 (8,8)	
(%)			(5,82)	(8,64)	(10,66)				
Surface Pressure (Pa)	97919,86	99014,24	96817,84	97856,13	97867,16	96864,81	97325,27	96565,64	
	(859,95)	(686,17)	(747,68)	(642,16)	(653,22)	(772,6)	(739,48)	(803,26)	
Precipitation	0,000009	0,000003	0,000172	0,000013	0,00001	0,000012	0,000026	0,000027	
(kg/m2/s)	(0,000019)	(0,00009)	(0,000082)	(0,000022)	(0,00002)	(0,000019)	(0,000031)	(0,000033)	
Downward Short	123,41	98,73	175,48	288,16	268,71	148,56	69,4	115,23	
Wave Radiation	(66,04)	(52,31)	(93,41)	(55,55)	(63,92)	(86,63)	(41,83)	(74,1)	
u wind component	3	-0,32	-1,08 (2,35)	-0,81 (2,44)	-0,91	6,22 (2,05)	0,21 (2,38)	1,96 (2,43)	
(m/s)	(2,55)	(2,21)			(1,88)				
v wind component	-4,47	-0,57	-0,6	-3,17 (1,59)	1,44	-1,66 (2,16)	1,55 (2,29)	3,54 (2,44)	
(m/s)	(2,19)	(2,36)	(3,08)		(1,93)				
V wind (m/s)	6,07	2,91	3,57 (1,95)	4,13 (1,47)	2,84	6,78	3,23 (1,69)	4,98 (1,85)	
	(1,87)	(1,57)			(1,45)	(2,1)			
Atmospheric	726,81	334,43	536,41	781,17	684,56	1023,34	381,33	715,74	
Boundary Layer	(180,29)	(142,99)	(146,11)	(148,25)	(160,33)	(208,16)	(138,9)	(187,28)	
Thickness (m)									

In addition to the previous Table 4.3.3, Figure 4.3.4 presents the mean normalized (z-score) variables of each cluster, respectively showing the differences of the parameters per cluster.

Figure 4.3.4: Normalized variables (z-score) averaged for each cluster

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities										
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public								
	Author(s): A AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 68/269								

Daily, 10-meter from ground level, wind data were used to create the wind roses per each cluster as they are shown in Figures 4.3.5-4.3.12. Each wind direction distribution per cluster is presented in more details in Table 4.3.4.

Figure 4.3.5: Wind Rose - Cluster 1

Figure 4.3.6: Wind Rose - Cluster 2

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities										
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public								
	Author(s): A AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 69/269								

Figure 4.3.7: Wind Rose - Cluster 3

Figure 4.3.8: Wind Rose - Cluster 4

Figure 4.3.9: Wind Rose - Cluster 5

Figure 4.3.10: Wind Rose - Cluster 6

Figure 4.3.11: Wind Rose - Cluster 7

Figure 4.3.12: Wind Rose - Cluster 8

I CARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities									
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public							
	Author(s): A AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 72/269							

Table 4.3.4: Wind Direction distribution per a	cluster
--	---------

			Wind16	Wind16 Tot												Total			
			S	SSW	SW	WSW	W	WNW	NW	NNW	N	NNE	NE	ENE	E	ESE	SE	SSE	-
Cluster	1	Count	0	0	0	0	110	449	751	593	335	128	27	1	0	0	0	0	2394
		% within Cluster8	0.0%	0.0%	0.0%	0.0%	4.6%	18.8%	31.4%	24.8%	14.0%	5.3%	1.1%	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%
	2	Count	72	61	40	65	107	131	147	132	138	123	179	128	69	74	140	201	1807
		% within Cluster8	4.0%	3.4%	2.2%	3.6%	5.9%	7.2%	8.1%	7.3%	7.6%	6.8%	9.9%	7.1%	3.8%	4.1%	7.7%	11.1%	100.0%
	3	Count	65	38	37	25	42	53	76	113	132	119	138	126	106	122	160	145	1497
		% within Cluster8	4.3%	2.5%	2.5%	1.7%	2.8%	3.5%	5.1%	7.5%	8.8%	7.9%	9.2%	8.4%	7.1%	8.1%	10.7%	9.7%	100.0%
	4	Count	1	1	0	6	36	139	328	437	556	593	643	376	50	17	1	3	3187
		% within Cluster8	0.0%	0.0%	0.0%	0.2%	1.1%	4.4%	10.3%	13.7%	17.4%	18.6%	20.2%	11.8%	1.6%	0.5%	0.0%	0.1%	100.0%
	5	Count	270	148	116	134	137	90	63	32	27	52	87	236	256	302	482	602	3034
		% within Cluster8	8.9%	4.9%	3.8%	4.4%	4.5%	3.0%	2.1%	1.1%	0.9%	1.7%	2.9%	7.8%	8.4%	10.0%	15.9%	19.8%	100.0%
	6	Count	0	0	3	188	815	916	317	31	4	1	0	0	0	0	0	0	2275
		% within Cluster8	0.0%	0.0%	0.1%	8.3%	35.8%	40.3%	13.9%	1.4%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%
	7	Count	224	178	197	250	248	127	72	70	36	35	49	49	54	84	253	402	2328
		% within Cluster8	9.6%	7.6%	8.5%	10.7%	10.7%	5.5%	3.1%	3.0%	1.5%	1.5%	2.1%	2.1%	2.3%	3.6%	10.9%	17.3%	100.0%
	8	Count	310	276	340	420	148	20	1	4	1	0	0	2	1	2	28	187	1740
		% within Cluster8	17.8%	15.9%	19.5%	24.1%	8.5%	1.1%	0.1%	0.2%	0.1%	0.0%	0.0%	0.1%	0.1%	0.1%	1.6%	10.7%	100.0%
Total		Count	942	702	733	1088	1643	1925	1755	1412	1229	1051	1123	918	536	601	1064	1540	18262
		% within Cluster8	5.2%	3.8%	4.0%	6.0%	9.0%	10.5%	9.6%	7.7%	6.7%	5.8%	6.1%	5.0%	2.9%	3.3%	5.8%	8.4%	100.0%
	D3.3: Report on AQ and GHGs concentration at t	he ground level in	the ICARUS																
--------	--	--------------------	-------------																
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public																
	Author(s): A AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 73/269																

Clusters and local Heat Waves

In Figures 4.3.13 and 4.3.14 are presented the heat waves occurrence per 5-year period and per cluster. The 5-year period 2041-2045 shows the highest number of heat waves. The most heat waves were associated with clusters 4 and especially 5 which correspond to clusters with days belong to warm period (see Table 4.3.2).

Figure 4.3.13: Heat Waves per 5-year period

Figure 4.3.14: Heat Waves per cluster

Clusters versus Air Quality level

As it can be seen in Table 4.1 one observation station has been used for the present analysis. The station descriptive statistics for NO_2 , O_3 and PM_{10} is given in Table 4.3.5.

		NO2	03	PM10
Mean		43.6719	35.4442	39.4942
Std. Deviatio	n	12.82162	20.61489	21.83015
Minimum		10.84	1.11	2.71
Maximum		112.58	104.58	254.79
Percentiles 5		23.6700	5.4812	15.7293
	25	35.0480	16.9140	25.2500
	50	43.5230	34.4800	34.3330
	75	51.3320	50.7980	48.0208
	95	64.7406	70.2378	81.2815

Table 4.3.5: Air pollutants descriptive statistics

	D3.3: Report on AQ and GHGs concentration at t	he ground level in	the ICARUS
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): A AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 74/269

Table 4.2.6 presents the pollutants' concentrations per cluster. Higher mean NO_2 concentrations are observed in clusters 1,2 and 7. Higher mean O_3 concentrations are observed in clusters 3,4 and 5. Higher mean PM_{10} concentrations are observed in clusters 1,2 and 7.

	Cluster							
	1	2	3	4	5	6	7	8
	Mean							
	(SD)							
PM10	45,81	47,44	32,65	29,42	32,4	41,59	48,39	44,22
(µg/m3)	(22,95)	(26,64)	(13,84)	(10,89)	(13,19)	(20,87)	(28,56)	(25,24)
03	29,21	24,08	46,43	51,77	47,89	30,9	19,8	26,1
(µg/m3)	(18,58)	(14,49)	(18,08)	(15,92)	(17,09)	(18,38)	(13,89)	(18,55)
NO2	47,38	47,61	41,17	37,72	39,47	46,13	47,36	45,91
(µg/m3)	(13,17)	(14,39)	(9,93)	(10,14)	(10,55)	(12,68)	(13,54)	(13,49)

Table 4.3.6: Summary pollutant concentrations per cluster

The differences in concentrations per cluster are shown in Figures 4.3.15-4.3.17.

Figure 4.3.15: NO₂ concentration statistics per cluster

	D3.3: Report on AQ and GHGs concentration at t	he ground level in	the ICARUS
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): A AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 75/269

Figure 4.3.16: O₃ concentration statistics per cluster

Figure 4.3.17: PM₁₀ concentration statistics per cluster

-	D3.3: Report on AQ and GHGs concentration at t	he ground level in	the ICARUS
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): A AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 76/269

Representative Days

In the following Table 4.3.7 are presented the selected RDs per 5-year period and per cluster.

Closest days to centroids per 5year per cluster		clusters								
			1	2	3	4	5	6	7	8
5 year period	2001-2005	1	2001/03/08	2005/02/01	2002/08/02	2004/06/27	2003/06/27	2003/03/17	2001/10/21	2004/02/21
	2006-2010	2	2009/10/26	2006/11/18	2008/08/05	2010/08/25	2006/09/03	2010/11/06	2007/11/12	2010/10/24
	2011-2015	3	2012/02/01	2015/02/20	2011/06/08	2011/06/12	2012/05/13	2011/03/17	2014/02/12	2014/10/12
	2016-2020	4	2018/02/16	2016/01/16	2017/06/04	2017/07/21	2020/09/09	2018/03/08	2019/11/04	2020/10/10
	2021-2025	5	2023/10/27	2022/02/25	2022/08/16	2021/09/03	2022/06/11	2024/02/28	2023/11/05	2025/03/08
	2026-2030	6	2028/02/29	2027/02/26	2030/05/15	2030/07/13	2029/08/26	2027/09/21	2028/12/05	2026/10/09
	2031-2035	7	2035/04/07	2031/02/17	2035/04/29	2033/07/20	2031/05/20	2034/09/27	2034/02/24	2034/11/05
	2036-2040	8	2038/12/29	2039/11/09	2040/05/25	2036/05/29	2036/06/10	2036/10/16	2037/11/27	2036/03/16
	2041-2045	9	2045/02/21	2043/02/15	2044/08/20	2044/08/29	2044/09/07	2042/03/31	2045/11/21	2041/04/07
	2046-2050	10	2050/12/18	2049/11/02	2049/09/19	2048/07/30	2049/09/14	2048/10/05	2049/02/27	2049/10/01

Selected Clusters and RDs for modeling purposes

Selected RDs will be used to perform targeted weather and air quality simulations within each selected 5-year period estimating hourly/daily concentrations of the priority pollutants to assess the climatic effect on air quality evolution and the characteristics of air quality future episodes. The selection was based on 3-year periods (2016-2020, 2021-2025 and 2031-2035) and on the clusters with the most elevated concentrations of PM₁₀, NO₂ and O₃. In the case of Brno, cluster 2 recorded the most elevated values of NO₂, cluster 4 for the case of O₃ and cluster 7 for the case of PM₁₀. In Table 4.3.8 are presented the selected days which was used for modeling purposes.

Period	Cluster 2 (NO2)	Cluster 4 (O3)	Cluster 7 (PM)
2016-2020	2016-01-16	2017-07-21	2019-11-04
2021-2025	2022-02-25	2021-09-03	2023-11-05
2031-2035	2031-02-17	2033-07-20	2034-02-24

Table 4.3.8: RDs for modeling purposes

	D3.3: Report on AQ and GHGs concentration at t	he ground level in	the ICARUS
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): A AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 77/269

4.3.3 Air Quality Modeling results

4.3.3.1 Overall results

In Figure 4.3.18 the daily average concentrations of NO₂, O_3 , PM_{10} and $PM_{2.5}$ for selected RDs are presented.

Figure 4.3.18: Daily average concentrations

In Figure 4.3.19 the obtained daily averaged concentrations are compared based on USTUTT and EGDAR HTAP emission inventories respectively. The results seem not to differ significantly.

Figure 4.3.19: Daily average concentrations - USTUTT vs EDGAR HTAP comparison

	D3.3: Report on AQ and GHGs concentration at t	he ground level in	the ICARUS
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): A AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 78/269

4.3.3.2 Clusters results

NO2 Concentrations (Cluster 2)

In Figure 4.3.20, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.3.21.

The daily maximum concentrations seem to be lower than the EU and WHO yearly limit except one day which is close to $40 \mu g/m^3$. The maximum hourly concentrations are below the limit of $200 \mu g/m^3$.

O₃ Concentrations (Cluster 4)

In Figure 4.3.22, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.3.23.

Concentrations show an increasing trend with maximum values exceeding the WHO 8hr limit of $100\mu g/m^3$. The maximum hourly concentrations exceed this limit as well as the EU 8hr limit of $120\mu g/m^3$.

PM10 Concentrations (Cluster 7)

In Figure 4.3.24, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.3.25.

The daily maximum concentrations show maximum values exceed the WHO yearly limit of $20\mu g/m^3$, however all concentrations are below the daily WHO limit of $50 \mu g/m^3$.

5	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
JS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 79/269

NO₂-Cluster 2

Figure 4.3.20: Daily NO₂ concentrations

Figure 4.3.21: Hourly NO₂ concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
9	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales		Public					
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 80/269					

O₃-Cluster 4

Figure 4.3.22: O₃ Daily concentrations

Figure 4.3.23: O₃ Hourly concentrations

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARU	S cities	
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 81/269

PM₁₀-Cluster 7

Figure 4.3.24: PM₁₀ Daily concentrations

Figure 4.3.25: PM₁₀ Hourly concentrations

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities					
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public			
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 82/269			

PM_{2.5} Concentrations (Cluster 7)

In Figure 4.3.26, the results are presented in terms of concentrations average, daily maximum and hourly maximum.

The daily maximum concentrations show maximum values well exceeding the WHO yearly limit of $10\mu g/m^3$, also are close/over the daily WHO limit of $25\mu g/m^3$.

Figure 4.3.26: PM_{2.5} Daily concentrations

Figure 4.3.27: BaP Daily concentrations

4.3.3.3 The Emission Inventory effect

Figures 4.3.28, 4.3.29, 4.3.30 and 4.3.31 illustrate the emission inventory temporal change effect on NO₂, O₃, PM₁₀ and PM_{2.5} concentration levels respectively. There is a clearly decreasing trend in NO₂ and slight decrease in O₃, on the other hand, slight increases are observed in PM₁₀ and PM_{2.5}.

Figure 4.3.28: NO₂ emission inventory comparison

Figure 4.3.29: O₃ emission inventory comparison

-	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public				
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 84/269				

Figure 4.3.30: PM₁₀ emission inventory comparison

Figure 4.3.31: PM_{2.5} emission inventory comparison

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public					
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 85/269					

4.3.4 The GHGs Modeling results

Figure 4.3.32: (a),(b) CO₂ and CH₄ Daily average concentrations . (c),(d) CO₂ and CH₄ concentrations of the most polluted day

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public					
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 86/269					

4.3.5 Conclusions

For Brno greater area, clusters 1,2,6,7 and 8 could be categorized in cold period and on the other hand clusters 3,4 and 5 in warm period.

In cluster 4 there is a linear increase in frequency occurrence through the ten 5-year periods and a slight increase in 1 and 5. On the other hand, clusters 3 and 7 show a slight decrease.

The 5-year period 2041-2045 shows the highest number of heat waves. The most heat waves were associated with clusters 4 and especially 5 which correspond to clusters with days belong to warm period

Cluster 2 is characterized with elevated NO_2 concentrations, cluster 4 with elevated O_3 concentrations and cluster 7 with elevated PM concentrations.

 NO_2 daily maximum concentrations seem to be lower than the EU and WHO yearly limit except one day which is close to $40\mu g/m^3$. The maximum hourly concentrations are below the limit of $200\mu g/m^3$.

 O_3 concentrations show an increasing trend with maximum values exceeding the WHO 8hr limit of $100\mu g/m^3$. The maximum hourly concentrations exceed this limit as well as the EU 8hr limit of $120\mu g/m^3$.

 PM_{10} daily maximum concentrations show maximum values exceed the WHO yearly limit of $20\mu g/m^3$, however all concentrations are below the daily WHO limit of $50 \ \mu g/m^3$.

 $PM_{2.5}$ daily maximum concentrations show maximum values well exceeding the WHO yearly limit of $10\mu g/m^3$, also are close/over the daily WHO limit of $25\mu g/m^3$.

For all days BaP daily concentrations are above WHO annual limit of 0.12ng/m³ and EU annual limit of 1ng/m³.

Emission reductions intervention shows a decreasing trend in NO_2 and slight decrease in O_3 , on the other hand, slight increases are observed in PM_{10} and $PM_{2.5}$

4.4 Basel

4.4.1 PCA results

The PCA analysis applied to the Basel data has led to the following results.

Three (3) principal components have been identified as factors for the cluster analysis (Table 4.4.1). Principal Components (PC) explaining 72.65% of the total variance in the initial data.

Factor 1 explains 34.54% of the total variance and contains the 2 temperature variables, mean, daily temperature range and the down ward short-wave radiation.

Factor 2 explains 22.08% of the total variance and contains the atmospheric boundary layer thickness, the U and V wind component and a negative sign of RH.

Factor 3 explains 16.03% of the total variance and contains precipitation and a negative sign of surface pressure.

Meteorological parameter	Principal Components				
	1	2	3		
Downward short-wave surface radiation	.875				
Temperature	.812				
Temperature Range	.742				
V wind		.813			
Atmospheric boundary layer thickness		.804			
U wind		.645			
RH		622			
Precipitation			.799		
Surface pressure			666		

Table 4.4.1: The Principal Components results

4.4.2 Clustering results

Cluster description and trends

As explained in 3.4.4 the selected clusters of the city of Basel are 8. In Figure 4.4.1 are shown the number of days per cluster, where clusters 1,2 and 5 have the most days and cluster 6 and 8 have the less. The monthly distribution per cluster is presented in Table 4.4.2 and in Figure 4.4.2. By dividing the year in two periods, cold and warm, clusters 1,4,6 and 7 could be categorized in cold period and on the other hand clusters 2,5 and 8 in warm period.

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at theSecurity:Public								
ICARUS Author(s): AUTH, USTUTT, CMCC, NCSRD Version: Final Page 88	269							

Figure 4.4.1: Number of Days per cluster

Count														
Month									Total					
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Cluster8	1	489	381	369	212	80	20	4	4	144	334	425	485	2947
	2	0	0	5	145	340	522	820	754	282	8	0	0	2876
	3	151	211	385	272	25	0	0	3	165	351	214	130	1907
	4	459	379	275	72	20	8	6	1	85	343	397	385	2430
	5	0	4	89	373	703	551	291	476	541	99	11	0	3138
	6	234	227	206	132	37	6	1	9	34	131	220	301	1538
	7	210	180	171	233	147	67	18	38	136	212	212	235	1859
	8	7	30	50	61	198	326	410	265	113	72	21	14	1567
Total		1550	1412	1550	1500	1550	1500	1550	1550	1500	1550	1500	1550	18262

Table 4.4.2: Monthly distribution per cluster

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public					
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 89/269					

Figure 4.4.2: Visualized bar chart of monthly distribution per cluster

A trend analysis of the 5-year frequency of each cluster (Figure 4.4.3). There is an evidence that in clusters 1, 2 and 6 there is a linear increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 3,4 and 5 show a linear decrease in frequency occurrence. In the rest clusters no clear trends could be pointed out.

Figure 4.4.3: Cluster 1-8 frequency trends

Cluster characterization

The clusters' implementation is based on the mean values of weather parameters which are displayed in Table 4.4.3.

	Cluster							
	1	2	3	4	5	6	7	8
	Mean (SD)							
Temperature (°C)	3,8 (3,89)	17,66 (4,68)	6,58 (5,11)	0,85 (5,38)	11,53 (5,23)	8,34 (3,95)	6,98 (3,96)	13,96 (6,19)
Daily Temperature Range (°C)	4,45 (1,87)	10,74 (1,63)	9,51 (2,19)	5,62 (2,08)	7,39 (1,6)	5,94 (2,38)	4,74 (1,87)	5,55 (2,01)
Relative Humidity (%)	85,33 (4,93)	73,74 (6,98)	67,68 (9,48)	87,53 (5,95)	83,26 (4,48)	67,42 (9,34)	81,59 (4,72)	90 (3,82)

Table	4.4.3:	Summarv	of the	8	clusters
TUDIC	4.4.5.	Summury	Uj the	υ	ciusters

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public				
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 91/269				

Surface Pressure (Pa)	95144,41 (838,91)	95548,54 (582,77)	96337,35 (792,5)	96107,75 (930,32)	95334,38 (636,25)	94915,94 (853,46)	94326,93 (807,27)	94940,19 (683,83)
Precipitation (kg/m2/s)	0,000053 (0,00004)	0,000019 (0,00003)	0,000005 (0,000013)	0,000018 (0,000025)	0,000041 (0,000035)	0,000034 (0,000035)	0,000108 (0,000063)	0,000167 (0,000092)
Downward Short Wave Radiation	80,59 (49,59)	301,53 (43,72)	156,2 (67,15)	92,72 (45,59)	219,63 (55,44)	103,39 (67,92)	108,03 (75,3)	162,97 (80,37)
u wind component (m/s)	5,54 (2,14)	-0,51 (2,15)	0,87 (2,65)	1,16 (2,56)	1,87 (2,31)	7,3 (2,27)	7,5 (2,4)	0,99 (2,43)
v wind component (m/s)	0,73 (1,78)	-0,41 (1,32)	1,22 (1,58)	-0,54 (1,62)	-0,9 (1,52)	4,37 (1,77)	1,83 (1,78)	-1,94 (1,67)
V wind (m/s)	5,93 (1,95)	2,26 (1,31)	3,03 (1,61)	2,92 (1,52)	3,19 (1,33)	8,72 (2,16)	7,95 (2,3)	3,37 (1,44)
Atmospheric Boundary Layer Thickness (m)	616,92 (166)	551,24 (116,16)	405,48 (169,96)	309,9 (126,23)	535,06 (137,26)	1028,45 (227,52)	930,2 (203,37)	428,19 (122,1)

In addition to the previous Table 4.4.3, Figure 4.4.4 presents the mean normalized (z-score) variables of each cluster, respectively showing the differences of the parameters per cluster.

Figure 4.4.4: Normalized variables (z-score) averaged for each cluster

Daily, 10-meter from ground level, wind data were used to create the wind roses per each cluster as they are shown in Figures 4.4.5-4.2.12. Each wind direction distribution per cluster is presented in more details in Table 4.4.4.

Figure 4.4.5: Wind Rose - Cluster 1

Figure 4.4.6: Wind Rose - Cluster 2

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities					
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public			
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 93/269			

Figure 4.4.7: Wind Rose - Cluster 3

Figure 4.4.8: Wind Rose - Cluster 4

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities					
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public			
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 94/269			

Figure 4.4.9: Wind Rose - Cluster 5

Figure 4.4.10: Wind Rose - Cluster 6

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities					
٢	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public			
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 95/269			

Figure 4.4.11: Wind Rose - Cluster 7

Figure 4.4.12: Wind Rose - Cluster 8

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities					
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public			
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 96/269			

Wind16 Total S SSW SW WSW W WNW NW NNW Ν NNE NE ENE Е ESE SE SSE 2947 Clust Count 25 65 189 1031 1182 381 49 4 2 0 0 1 2 5 7 4 1 er8 % within Cluster8 40.1% 0.0% 0.0% 0.0% 0.2% 0.2% 0.1% 100.0% 0.8% 2.2% 6.4% 35.0% 12.9% 1.7% 0.1% 0.1% 0.1% 2 Count 57 90 180 255 247 136 100 84 109 208 366 541 278 99 65 61 2876 % within Cluster8 2.0% 3.1% 6.3% 8.9% 8.6% 4.7% 3.5% 2.9% 3.8% 7.2% 12.7% 18.8% 9.7% 3.4% 2.3% 2.1% 100.0% 3 Count 135 192 365 313 150 53 15 16 22 26 45 101 167 110 81 116 1907 % within Cluster8 2.4% 100.0% 7.1% 10.1% 19.1 16.4% 7.9% 2.8% 0.8% 0.8% 1.2% 1.4% 5.3% 8.8% 5.8% 4.2% 6.1% % 4 44 47 116 301 454 295 153 114 141 159 153 141 117 84 54 57 2430 Count % within Cluster8 12.4% 1.8% 1.9% 4.8% 18.7% 12.1% 6.3% 4.7% 5.8% 6.5% 6.3% 5.8% 4.8% 3.5% 2.2% 2.3% 100.0% 5 20 33 97 331 819 613 247 210 182 255 190 82 20 11 13 15 3138 Count 19.5% % within Cluster8 0.6% 1.1% 3.1% 10.5% 26.1% 7.9% 6.7% 5.8% 8.1% 6.1% 2.6% 0.6% 0.4% 0.4% 0.5% 100.0% 6 Count 7 55 559 839 78 0 0 0 0 0 0 0 0 0 0 0 1538 % within Cluster8 0.5% 3.6% 36.3 54.6% 5.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% % 7 157 704 1859 Count 1 15 931 50 1 0 0 0 0 0 0 0 0 0 % within Cluster8 0.1% 0.8% 8.4% 50.1% 37.9% 2.7% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 8 5 18 173 189 172 145 8 1567 Count 11 73 265 195 261 39 4 5 4 % within Cluster8 0.3% 0.7% 1.1% 4.7% 11.0% 16.9% 12.1% 11.0% 12.4% 16.7% 9.3% 2.5% 0.5% 0.3% 0.3% 0.3% 100.0% Total 294 508 1681 4074 3807 1793 754 600 651 909 899 905 592 313 225 257 18262 Count % within Cluster8 2.8% 22.3% 20.8% 4.1% 3.6% 3.2% 1.7% 1.2% 1.4% 100.0% 1.6% 9.2% 9.8% 3.3% 5.0% 4.9% 5.0%

Table 4.4.4: 16 Wind Direction distribution per cluster

Clusters and local Heat Waves

In Figures 4.4.13 and 4.4.14 are presented the heat waves occurrence per 5-year period and per cluster. The 5-year period 2041-2045 shows the highest number of heat waves, while the next 5year period shows a decrease. The most heat waves were associated with cluster 2 which correspond to cluster with days belong to warm period (see Table 4.4.2).

Figure 4.4.15: Heat Waves per 5-year period

Figure 4.4.14: Heat Waves per cluster

Clusters versus Air Quality level

As it can be seen in Table 4.1 three observation stations have been used for the present analysis. The descriptive statistics for NO_2 , O_3 and PM_{10} is given in Table 4.4.5.

TUDIE	Tuble 4.4.5. All pollutunts descriptive statistics						
		NO2	03	PM10			
Mean		40.1989	44.4874	23.4915			
Std. Deviation		12.10542	26.61284	13.10173			
Minimum		2.95	0.79	2.75			
Maximum		101.91	140.15	120.53			
Percentiles 5		21.4872	4.3018	8.5000			
	25	32.0507	21.1645	14.3000			
	50	39.9335	46.0875	20.5667			
	75	48.0404	63.4708	29.4333			
	95	59.9837	87.3321	49.2358			

Table 4.4.5: Air p	ollutants des	criptive statistics

Table 4.4.6 presents the pollutants' concentrations per cluster. Higher mean NO₂ concentrations are observed in clusters 1,4 and 6. Higher mean O₃ concentrations are observed in clusters 2,5 and 8. Higher mean PM₁₀ concentrations are observed in clusters 1,4 and 6.

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public				
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 98/269				

	Cluster							
	1	2	3	4	5	6	7	8
	Mean							
	(SD)							
PM10 (μg/m3)	27,24	18,81	24,9	27,82	19,69	26,43	24,14	20,35
	(15,22)	(7,26)	(13,92)	(16,53)	(8,4)	(15,55)	(12,65)	(9,63)
O3 (μg/m3)	29,61	65,68	35,5	29,56	59,94	30,36	37,11	60,48
	(22,68)	(20,63)	(20,65)	(22,01)	(20,07)	(22,48)	(25,38)	(23,52)
NO2 (µg/m3)	43,46	35,99	41,82	42,75	37,59	42,79	41,41	36,84
	(12,39)	(10,45)	(12,49)	(12,97)	(10,99)	(12,5)	(11,54)	(10,79)

Table 4.4.6: Summary pollutant concentrations

The differences in concentrations per cluster are shown in Figures 4.4.15-4.2.17.

Figure 4.4.15: NO₂ concentration statistics per cluster

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities					
9	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public			
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 99/269			

Figure 4.4.16: O₃ concentration statistics per cluster

Figure 4.4.17: PM₁₀ concentration statistics per cluster

D3.3: Report on AQ and GHGs concentration at the gro	ound level in the I	CARUS cities
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public
Author(s): AUTH. USTUTT. CMCC. NCSRD	Version: Final	Page 100/269

Representative Days

In the following Table 4.4.7 are presented the selected RDs per 5-year period and per cluster.

Closest	et days to centroids tear per cluster		o centroids clusters							
per Syea			1	2	3	4	5	6	7	8
5 year	2001-2005	1	2004/02/12	2002/07/11	2004/11/10	2001/02/16	2005/06/10	2003/11/03	2004/11/18	2005/08/06
periou	2006-2010	2	2009/11/13	2008/07/21	2008/01/02	2007/10/30	2010/05/13	2007/11/05	2009/04/11	2010/08/27
	2011-2015	3	2011/02/28	2013/07/09	2013/10/04	2011/02/25	2011/06/11	2012/03/20	2013/12/01	2015/09/17
	2016-2020	4	2018/09/13	2018/08/15	2019/10/28	2017/02/20	2017/06/20	2020/10/17	2016/01/30	2020/05/05
	2021-2025	5	2021/11/01	2023/05/27	2021/12/14	2024/03/21	2022/06/22	2021/10/29	2025/10/15	2025/07/03
	2026-2030	6	2028/01/23	2026/06/27	2026/10/18	2030/02/18	2029/08/19	2029/03/04	2029/03/18	2030/08/14
	2031-2035	7	2031/10/28	2035/06/09	2035/10/28	2035/02/07	2031/05/02	2032/12/26	2031/10/08	2035/05/23
	2036-2040	8	2036/02/29	2040/08/17	2039/11/04	2039/10/04	2038/05/29	2038/11/06	2037/03/25	2036/06/16
	2041-2045	9	2045/02/10	2041/09/06	2041/03/14	2045/12/10	2044/05/04	2044/10/12	2041/03/18	2045/06/27
	2046-2050	10	2046/02/02	2050/05/09	2048/03/04	2046/03/10	2046/08/14	2048/02/08	2048/04/12	2046/08/11

T		,				
1 abie 4.4.7: Ke	presentative a	lays per	cluster	ana 5	year peri	оа

Selected Clusters and RDs for modeling purposes

Selected RDs will be used to perform targeted weather and air quality simulations within each selected 5-year period estimating hourly/daily concentrations of the priority pollutants to assess the climatic effect on air quality evolution and the characteristics of air quality future episodes. The selection was based on 3-year periods (2016-2020, 2021-2025 and 2031-2035) and on the clusters with the most elevated concentrations of PM₁₀, NO₂ and O₃. In the case of Basel, cluster 1 recorded the most elevated values of NO₂, cluster 2 for the case of O₃ and cluster 4 for the case of PM₁₀. In Table 4.4.8 are presented the selected days which was used for modeling purposes.

Table 4.4.8: RDs for modeling purposes

Period	Cluster 1 (NO2)	Cluster 2 (O3)	Cluster 4 (PM)
2016-2020	2018-09-13	2018-08-15	2017-02-20
2021-2025	2021-11-01	2023-05-27	2024-03-21
2031-2035	2031-10-28	2035-06-09	2035-02-07

4.4.3 Air Quality Modeling results

4.4.3.1 Overall results

In Figure 4.4.18 the daily average concentrations of NO₂, O₃, PM_{10} and $PM_{2.5}$ for selected RDs are presented.

Figure 4.4.18: Daily average concentrations

In Figure 4.4.19 the obtained daily averaged concentrations are compared based on USTUTT and EGDAR HTAP emission inventories respectively. The results seem not to differ significantly.

Figure 4.4.19: Daily average concentrations - USTUTT vs EDGAR HTAP comparison

4.4.3.2 Clusters results

NO2 Concentrations (Cluster 1)

In Figure 4.4.20, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.4.21.

Concentrations show a decreasing trend. The daily maximum concentrations exceed the EU and WHO yearly limit of $40\mu g/m^3$. The maximum hourly concentrations showing a clear decreasing trend where in 2031 are below the limit of $200\mu g/m^3$.

O₃ Concentrations (Cluster 2)

In Figure 4.4.22, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.4.23.

Concentrations show a decreasing trend with maximum values exceeding the WHO 8hr limit of $100\mu g/m^3$. The maximum hourly concentrations are close and sometimes above the WHO and the EU 8hr limit of $120\mu g/m^3$.

PM10 Concentrations (Cluster 4)

In Figure 4.4.24, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.4.25.

The daily maximum concentrations exceed the WHO yearly limit of $20\mu g/m^3$, however all concentrations are below the daily WHO limit of $50\mu g/m^3$ and there is a clear decreasing trend.

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities			
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public	
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 103/269	

NO₂-Cluster 1

Figure 4.4.20: NO₂ Day concentrations

Figure 4.4.21: Hourly NO₂ concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities				
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public		
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 104/269		

O₃-Cluster 2

Figure 4.4.22: O₃ Daily concentrations

Figure 4.4.23: O₃ Hourly concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities			
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public	
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 105/269	

PM₁₀-Cluster 4

Figure 4.4.24: PM₁₀ Daily concentrations

Figure 4.4.25: PM₁₀ Hourly concentrations

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities				
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public		
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 106/269		

PM_{2.5} Concentrations (Cluster 4)

In Figure 4.4.26, the results are presented in terms of concentrations average, daily maximum and hourly maximum.

The daily maximum concentrations exceed the WHO yearly limit of $10\mu g/m^3$ following a decreasing trend.

Figure 4.4.26: PM_{2.5} Day concentrations

Figure 4.4.27 presents the estimated BaP daily concentrations contained in PM_{2.5}. All days are above WHO annual limit of 0.12ng/m³ and only one day is on the EU annual limit of 1ng/m³.

4.4.3.3 The Emission Inventory effect

Figures 4.4.28, 4.3.29, 4.3.30 and 4.3.31 illustrate the emission inventory temporal change effect on NO₂, O₃, PM₁₀ and PM_{2.5} concentration levels respectively. There is a clearly decreasing trend in all pollutants indicating the positive effect on emission reductions intervention.

Figure 4.4.28: NO2 emission inventory comparison

Figure 4.4.29: O₃ emission inventory comparison

Figure 4.4.30: PM₁₀ emission inventory comparison

Figure 4.4.31: PM_{2.5} emission inventory comparison
	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public				
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 109/269				

4.4.4 The GHGs Modeling results

Figure 4.4.32: (a),(b) CO₂ and CH₄ Daily average concentrations . (c),(d) CO₂ and CH₄ concentrations of the most polluted day

D3.3: Report on AQ and GHGs concentration at the gro	AQ and GHGs concentration at the ground level in the ICARUS cities						
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public					
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 110/269					

4.4.5 Conclusions

For Basel greater area, clusters 1,4,6 and 7 could be categorized in cold period and on the other hand clusters 2,5 and 8 in warm period.

In clusters 1, 2 and 6 there is a linear increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 3,4 and 5 show a linear decrease in frequency occurrence.

The 5-year period 2041-2045 shows the highest number of heat waves, while the next 5-year period shows a decrease. The most heat waves were associated with cluster 2 which correspond to cluster with days belong to warm period.

Cluster 1 is characterized with elevated NO_2 concentrations, cluster 2 with elevated O_3 concentrations and cluster 4 with elevated PM concentrations.

 NO_2 concentrations show a decreasing trend. The daily maximum concentrations exceed the EU and WHO yearly limit of $40\mu g/m^3$. The maximum hourly concentrations showing a clear decreasing trend where in 2031 are below the limit of $200\mu g/m^3$.

 O_3 concentrations show a decreasing trend with maximum values exceeding the WHO 8hr limit of $100\mu g/m^3$. The maximum hourly concentrations are close and sometimes above the WHO and the EU 8hr limit of $120\mu g/m^3$.

 PM_{10} daily maximum concentrations exceed the WHO yearly limit of $20\mu g/m^3$, however all concentrations are below the daily WHO limit of $50\mu g/m^3$ and there is a clear decreasing trend.

 $PM_{2.5}$ daily maximum concentrations exceed the WHO yearly limit of $10\mu g/m^3$ following a decreasing trend.

All days are above WHO annual limit of 0.12ng/m³ and only one day is on the EU annual limit of 1ng/m³.

There is a clearly decreasing trend in all pollutants indicating the positive effect on emission reductions intervention.

4.5 Athens

4.5.1 PCA results

The PCA analysis applied to Athens data has led to the following results.

Four (4) principal components have been identified as factors for the cluster analysis (Table 4.5.1). Principal Components (PC) explaining 79.78% of the total variance in the initial data.

Factor 1 explains 28.70% of the total variance and contains mean daily temperature and the down ward short-wave radiation.

Factor 2 explains 18.68% of the total variance and contains RH, precipitation and a negative sign of daily temperature range.

Factor 3 explains 16.49% of the total variance and contains the atmospheric boundary layer thickness.

Factor 4 explains 15.90% of the total variance and contains U and V wind component.

Meteorological parameters	Principal Components					
	1	2	3	4		
Temperature	.898					
Downward short-wave surface radiation	.859					
Surface pressure						
RH		.762				
Precipitation		.755				
Temperature Range		611				
Atmospheric boundary layer thickness			917			
U wind				.768		
V wind				.765		

Table 4.5.1: The Principal Components results

4.5.2 Clustering results

Cluster description and trends

As explained in 3.4.4 the selected clusters of the city of Athens are 10. In Figure 4.5.1 are shown the number of days per cluster, where cluster 5 have the most days and cluster 3,8 and 9 have the less. The monthly distribution per cluster is presented in Table 4.5.2 and in Figure 4.5.2. By dividing the year in two periods, cold and warm, clusters 1,2,3,6 and 10 could be categorized in cold period and on the other hand clusters 4,5,7 and 9 in warm period.

Figure 4.5.1: Number of Days per cluster

		Mont	h				.,		1000					Total
		mont												. o tu
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1
	r													
Cluster s	1	255	166	154	103	27	3	0	0	36	331	324	320	1719
	2	412	400	368	150	1	0	0	0	12	239	327	388	2297
	3	173	176	199	99	16	0	0	0	8	72	118	130	991
	4	0	0	6	52	63	109	514	780	341	26	0	0	1891
	5	0	1	37	307	570	708	616	599	711	123	0	0	3672
	6	335	283	266	132	65	5	1	0	29	250	322	367	2055
	7	1	7	73	338	549	496	250	129	224	66	1	0	2134
	8	127	148	190	158	169	50	13	6	43	68	81	105	1158
	9	65	48	73	64	85	129	156	36	61	113	99	53	982
	10	182	183	184	97	5	0	0	0	35	262	228	187	1363
Total		155	141	155	150	155	150	155	155	150	155	150	155	1826
		0	2	0	0	0	0	0	0	0	0	0	0	2

	Table 4.5.2: Monthl	v distribution	per cluster
--	---------------------	----------------	-------------

Figure 4.5.2: Visualized bar chart of monthly distribution per cluster

A trend analysis of the 5-year frequency of each cluster (Figure 4.5.3). There is an evidence that in clusters 4 and 10 there is a linear increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 3,8 and 9 show a linear decrease in frequency occurrence. In the rest clusters no clear trends could be pointed out.

Figure 4.5.3: Cluster 1-10 frequency trends

Cluster characterization

The clusters' implementation is based on the mean values of weather parameters which are displayed in Table 4.5.3.

D3.3: Report on AQ and GHGs concentration at the gro	on AQ and GHGs concentration at the ground level in the ICARUS cities						
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public					
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 115/269					

Tahle 4 5	3 · Summar	v of the	10 clusters
10016 4.5	.J. Jummur		

	Cluster									
	1	2	3	4	5	6	7	8	9	10
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
Temperature (°C)	13,61 (3,63)	11,47 (3,8)	8,1 (4,19)	25,17 (3,43)	22,8 (4,13)	13,47 (3,46)	20,47 (4,91)	13,84 (4,27)	17,67 (5,63)	10,05 (4,84)
Daily Temperature Range (°C)	5,29 (1,13)	6,78 (1,18)	5,09 (1,1)	5,89 (0,88)	6,9 (0,97)	5,07 (1,33)	7,07 (0,93)	5,16 (1,28)	4,22 (1,21)	3,81 (1,08)
Relative Humidity	82,13	64,37 (7,4)	55,3 (6,9)	62,09	67,77	74,64	62,01	64,73	82,71	73,61
(%)	(6,04)			(6,62)	(7,82)	(5,33)	(5,78)	(5,67)	(5,64)	(7,71)
Surface Pressure	100132,93	100451,41	99780,74	99317,54	99227,34	99200,18	98981,53	98555,29	98898,67	100358,36
(Pa)	(575,12)	(545,89)	(617,08)	(396,46)	(434,55)	(535,71)	(429,06)	(520,3)	(601,41)	(725,45)
Precipitation	0,00001	0,000001	0,000003	0,000003	0,000006	0,000014	0,000005	0,000011	0,000143	0,000011
(kg/m2/s)	(0,000021)	(0,000003)	(0,000009)	(0,000012)	(0,000015)	(0,000024)	(0,000012)	(0,000019)	(0,000093)	(0,000024)
Downward Short	148,87	173,38	193,87	318,73	311,34	147,56	321,06	217,68	191,71	160,5
Wave Radiation	(57,27)	(58,32)	(68,11)	(32,77)	(41,67)	(62,21)	(43,11)	(89,36)	(94,96)	(60,85)
u wind component (m/s)	0,05 (1,65)	2,53 (2,04)	3,6 (2,27)	-1,58 (1,35)	0,37 (1,42)	3,36 (1,74)	4,62 (1,62)	6,82 (1,81)	-0,61 (2,55)	-1,42 (1,84)
v wind component (m/s)	1,82 (2,92)	-0,89 (2,13)	-5,46 (2,46)	-6,96 (1,89)	0,97 (2,43)	3,47 (3,76)	0,23 (2,75)	1,8 (4,03)	2,12 (4,96)	-7,09 (2,47)
V wind (m/s)	3,26 (1,97)	3,57 (1,77)	7,05 (2,04)	7,24 (1,99)	2,56 (1,56)	5,97 (2,19)	5,36 (1,7)	8,16 (1,65)	5,14 (3,08)	7,53 (2,25)
Atmospheric	278,28	316,5	743,16	717,47	370,72	498,93	616,6	850,24	508,91	609,37
Boundary Layer	(98,89)	(114,14)	(200,49)	(171,56)	(86,75)	(128,29)	(145,43)	(175,89)	(174,34)	(180,29)
Thickness (m)										

In addition to the previous Table 4.5.3, Figure 4.5.4 presents the mean normalized (z-score) variables of each cluster, respectively showing the differences of the parameters per cluster.

Figure 4.5.4: Normalized variables (z-score) averaged for each cluster

Daily, 10-meter from ground level, wind data were used to create the wind roses per each cluster as they are shown in Figures 4.5.5-4.5.14. Each wind direction distribution per cluster is presented in more details in Table 4.5.4.

Figure 4.5.5: Wind Rose - Cluster 1

Figure 4.5.6: Wind Rose - Cluster 2

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public				
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 117/269				

Figure 4.5.7: Wind Rose - Cluster 3

Figure 4.5.8: Wind Rose - Cluster 4

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
9	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public				
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 118/269				

Figure 4.5.9: Wind Rose - Cluster 5

Figure 4.5.10: Wind Rose - Cluster 6

Figure 4.5.12: Wind Rose - Cluster 8

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities						
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public				
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 120/269				

Figure 4.5.13: Wind Rose - Cluster 9

Figure 4.5.14: Wind Rose - Cluster 10

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities					
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public			
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 121/269			

Table 4.5.4: 16 Wind Direction distribution per cluster

				Wind16 Total										Total					
			S	SSW	SW	WSW	W	WNW	NW	NNW	Ν	NNE	NE	ENE	E	ESE	SE	SSE	
Cluster10	1	Count	341	262	143	117	48	40	29	49	100	91	56	39	41	45	103	215	1719
		% within Cluster10	19.8%	15.2%	8.3%	6.8%	2.8%	2.3%	1.7%	2.9%	5.8%	5.3%	3.3%	2.3%	2.4%	2.6%	6.0%	12.5%	100.0%
	2	Count	31	107	157	251	487	439	256	255	213	54	13	4	7	2	7	14	2297
		% within Cluster10	1.3%	4.7%	6.8%	10.9%	21.2%	19.1%	11.1%	11.1%	9.3%	2.4%	.6%	.2%	.3%	.1%	.3%	.6%	100.0%
	3	Count	0	0	0	1	18	189	248	369	163	3	0	0	0	0	0	0	991
		% within Cluster10	0.0%	0.0%	0.0%	.1%	1.8%	19.1%	25.0%	37.2%	16.4%	.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%
	4	Count	1	0	0	0	0	0	5	35	827	983	34	6	0	0	0	0	1891
		% within Cluster10	.1%	0.0%	0.0%	0.0%	0.0%	0.0%	.3%	1.9%	43.7%	52.0%	1.8%	.3%	0.0%	0.0%	0.0%	0.0%	100.0%
	5	Count	524	457	342	352	203	114	98	160	332	175	98	75	63	75	171	433	3672
		% within Cluster10	14.3%	12.4%	9.3%	9.6%	5.5%	3.1%	2.7%	4.4%	9.0%	4.8%	2.7%	2.0%	1.7%	2.0%	4.7%	11.8%	100.0%
	6	Count	188	594	423	294	287	140	54	45	12	2	0	0	0	0	0	16	2055
		% within Cluster10	9.1%	28.9%	20.6%	14.3%	14.0%	6.8%	2.6%	2.2%	.6%	.1%	0.0%	0.0%	0.0%	0.0%	0.0%	.8%	100.0%
	7	Count	6	123	239	359	631	614	129	30	2	0	0	0	0	1	0	0	2134
		% within Cluster10	.3%	5.8%	11.2%	16.8%	29.6%	28.8%	6.0%	1.4%	.1%	0.0%	0.0%	0.0%	0.0%	.0%	0.0%	0.0%	100.0%
	8	Count	4	83	237	269	292	230	36	7	0	0	0	0	0	0	0	0	1158
		% within Cluster10	.3%	7.2%	20.5%	23.2%	25.2%	19.9%	3.1%	.6%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%
	9	Count	211	101	19	13	13	25	36	52	91	60	65	36	33	43	72	112	982
		% within Cluster10	21.5%	10.3%	1.9%	1.3%	1.3%	2.5%	3.7%	5.3%	9.3%	6.1%	6.6%	3.7%	3.4%	4.4%	7.3%	11.4%	100.0%
	10	Count	0	0	0	0	0	0	2	62	659	524	73	26	9	7	1	0	1363
		% within Cluster10	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	.1%	4.5%	48.3%	38.4%	5.4%	1.9%	.7%	.5%	.1%	0.0%	100.0%
Total		Count	1306	1727	1560	1656	1979	1791	893	1064	2399	1892	339	186	153	173	354	790	18262
		% within Cluster10	7.2%	9.5%	8.5%	9.1%	10.8%	9.8%	4.9%	5.8%	13.1%	10.4%	1.9%	1.0%	.8%	.9%	1.9%	4.3%	100.0%

Clusters and local Heat Waves

In Figures 4.5.15 and 4.5.16 are presented the heat waves occurrence per 5-year period and per cluster. Heat waves occurrence shows an increased rate. The 5-year period 2046-2050 shows the highest number of heat waves. The most heat waves were associated with clusters 4 and 5 which correspond to clusters with days belong to warm period (see Table 4.5.2).

Figure 4.5.15: Heat Waves per 5-year period

Figure 4.5.16: Heat Waves per cluster

Clusters versus Air Quality level

As it can be seen in Table 4.1 five observation stations have been used for the present analysis. The descriptive statistics for NO₂, O₃ and PM₁₀ is given in Table 4.5.5.

		MEAN_NO2	MEAN_O3	MEAN_PM10			
Mean		39.5219	56.2581	45.0176			
Std. Deviatio	on	13.99865	21.96799	21.66797			
Minimum		5.87	4.24	5.96			
Maximum		96.50	120.17	387.75			
Percentiles 5		18.6391	21.7433	20.5000			
	25	29.1753	38.3834	31.0000			
	50	38.3750	56.3608	40.8774			
	75	48.4668	72.7603	54.0105			
	95	64.1800	91.7876	81.8562			

	Table 4.5.5: Air	pollutants	descriptive	statistics
--	------------------	------------	-------------	------------

Table 4.5.6 presents the pollutants' concentrations per cluster. Higher mean NO_2 concentrations are observed in clusters 6,8 and 10. Higher mean O_3 concentrations are observed in clusters 4 and 5. Higher mean PM_{10} concentrations are observed in clusters 3 and 6.

	Cluster									
	1	2	3	4	5	6	7	8	9	10
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
PM10 (μg/m3)	44.03 (20.51)	46.61 (27.41)	48.54 (27.77)	41.79 (16.3)	44.16 (16.99)	47.21 (26.8)	44.43 (18.05)	46.13 (22.57)	43.16 (16.94)	45.49 (22.27)
Ο3 (μg/m3)	41,12 (16,26)	40,91 (16,11)	43,7 (16,42)	76,37 (14,62)	72,48 (15,26)	42,57 (17,43)	70,04 (15,93)	50,21 (18,96)	59,1 (21,71)	43,98 (16,18)
NO2 (μg/m3)	40,41 (13,81)	40,71 (13,86)	40,46 (14,64)	34,64 (13,69)	37,61 (13,14)	40,96 (14,34)	40,85 (13,58)	41,67 (14,4)	38,51 (13,22)	41,56 (14,96)

Table 4.5.6: Summary pollutant concentrations per cluster

The differences in concentrations per cluster are shown in Figures 4.5.17-4.5.19.

Figure 4.5.17: NO₂ concentration statistics per cluster

-	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public					
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 124/269					

Figure 4.5.18: O₃ concentration statistics per cluster

*Figure 4.5.19: PM*₁₀ *concentration statistics per cluster*

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public					
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 125/269					

Representative Days

In the following Table 4.5.7 are presented the selected RDs per 5-year period and per cluster.

Closest days to centroids			clusters									
per sye	ar per cluster		1	2	3	4	5	6	7	8	9	10
5 year	2001-2005	1	2003-03-07	2003-11-16	2005-03-24	2005-08-17	2002-06-26	2005-11-21	2005-05-30	2003-03-29	2005-06-28	2002-03-08
d	2006-2010	2	2009-11-16	2008-11-20	2008-11-02	2006-08-09	2008-08-25	2009-11-25	2006-05-22	2006-03-25	2006-04-06	2006-10-22
	2011-2015	3	2012-03-14	2011-02-07	2011-02-12	2015-07-21	2012-09-15	2011-11-06	2012-06-04	2012-04-04	2015-02-14	2011-03-07
	2016-2020	4	2019-11-01	2018-12-21	2019-01-20	2019-07-07	2018-06-29	2016-11-22	2016-05-11	2019-03-19	2019-03-12	2019-10-28
	2021-2025	5	2025-12-24	2022-12-27	2023-01-10	2022-08-22	2024-09-01	2023-02-03	2023-06-04	2024-03-13	2021-10-15	2022-10-29
	2026-2030	6	2027-11-05	2026-02-02	2029-10-15	2028-07-14	2029-09-15	2026-03-07	2029-06-04	2028-04-15	2030-03-26	2026-02-12
	2031-2035	7	2035-12-03	2035-11-20	2033-12-16	2033-09-03	2035-06-03	2034-11-30	2033-09-14	2032-04-21	2033-10-23	2035-03-16
	2036-2040	8	2038-11-23	2036-12-01	2038-02-22	2037-08-06	2036-06-05	2038-02-08	2037-06-26	2036-03-02	2036-10-26	2039-11-11
	2041-2045	9	2041-02-23	2041-11-12	2041-01-25	2041-08-13	2042-07-01	2041-03-16	2044-05-25	2044-02-22	2042-04-17	2043-11-07
	2046-2050	1 0	2046-12-09	2046-02-01	2050-01-29	2048-06-22	2047-05-30	2047-11-15	2046-05-25	2048-03-17	2049-04-17	2049-03-16

Table A F 7.	Donrocontativo	dave nor	ductor and	I Fugar pariad
10018 4.5.7	Representative	uuvs per	ciuster and	i sveur berioù

Selected Clusters and RDs for modeling purposes

Selected RDs will be used to perform targeted weather and air quality simulations within each selected 5-year period estimating hourly/daily concentrations of the priority pollutants to assess the climatic effect on air quality evolution and the characteristics of air quality future episodes. The selection was based on 3-year periods (2016-2020, 2021-2025 and 2031-2035) and on the clusters with the most elevated concentrations of PM₁₀, NO₂ and O₃. In the case of Athens, cluster 8 recorded the most elevated values of NO₂, cluster 4 for the case of O₃ and cluster 3 for the case of PM₁₀. In Table 4.5.8 are presented the selected days which was used for modeling purposes.

Table 4.5.8: RDs for modeli	ng purposes

Period	Cluster 3 (PM)	Cluster 4 (O3)	Cluster 8 (NO2)
2016-2020	2019-01-20	2019-07-07	2019-03-19
2021-2025	2023-01-10	2022-08-22	2024-03-13
2031-2035	2033-12-16	2033-09-03	2032-04-21

4.5.3 Air Quality Modeling results

4.5.3.1 Overall results

In Figure 4.5.20 the daily average concentrations of NO₂, O₃, PM_{10} and $PM_{2.5}$ for selected RDs are presented.

Figure 4.5.20: Daily average concentrations

In Figure 4.5.19 the obtained daily averaged concentrations are compared based on USTUTT and EGDAR HTAP emission inventories respectively. The results seem not to differ significantly.

Figure 4.5.21: Daily average concentrations - USTUTT vs EDGAR HTAP comparison

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public				
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 127/269				

4.5.3.2 Clusters results

NO₂ Concentrations (Cluster 8)

In Figure 4.5.22, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.5.23.

Concentrations show a decreasing trend. There is one day in which the daily maximum concentration is below the EU and WHO yearly limit of $40\mu g/m^3$. The maximum hourly concentrations are below the limit of $200\mu g/m^3$.

O₃ Concentrations (Cluster 4)

In Figure 4.5.24, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.5.25.

The picture is mixed. Only in one day the daily maximum concentration is below WHO 8hr limit of 100µg/m³. All maximum hourly concentrations are above the WHO limit.

PM₁₀ Concentrations (Cluster 3)

In Figure 4.5.26, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.5.27.

The daily maximum concentrations in one day exceed the WHO yearly limit of $20\mu g/m^3$, however all concentrations are below the daily WHO limit of $50\mu g/m^3$ and there is a clear decreasing trend.

-	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities								
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public						
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 128/269						

NO₂-Cluster 8

Figure 4.5.22: NO₂ Day concentrations

Figure 4.5.23: Hourly NO₂ concentrations

-	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public					
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 129/269					

O₃-Cluster 4

Figure 4.5.24: O₃ Daily concentrations

Figure 4.5.25: O₃ Hourly concentrations

-	D3.3: Report on AQ and GHGs concentration at the	ground level in the ICARUS	cities
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 130/269

PM₁₀-Cluster 3

Figure 4.5.26: PM₁₀ Daily concentrations

Figure 4.5.27: PM₁₀ Hourly concentrations

PM_{2.5} Concentrations (Cluster 3)

In Figure 4.5.28, the results are presented in terms of concentrations average, daily maximum and hourly maximum.

The pollutants' concentrations are following a decreasing trend. The daily maximum concentrations are below the WHO yearly limit of $10\mu g/m^3$ in two days.

Figure 4.5.28: PM_{2.5} Day concentrations

Figure 4.5.29 presents the estimated BaP daily concentrations contained in PM_{2.5}. There is a clear decreasing trend. All days are above WHO annual limit of 0.12ng/m³ however one day almost reaches the WHO limit and two days are on and below the EU annual limit of 1ng/m³.

Figure 4.5.29: BaP daily concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the					
9	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public			
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 132/269			

4.5.3.3 The Emission Inventory effect

Figures 4.5.30, 4.5.31, 4.5.32 and 4.5.33 illustrate the emission inventory temporal change effect on NO₂, O₃, PM₁₀ and PM_{2.5} concentration levels respectively. There is a decreasing trend in NO₂ and PM concentrations and a slight decrease in O₃ indicating the positive effect on emission reductions intervention; a quality check of the emission inventory could clarify more the outcome.

Figure 4.5.30: NO₂ emission inventory comparison

Figure 4.5.31: O₃ emission inventory comparison

	D3.3: Report on AQ and GHGs concentration at the ground level in the					
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public			
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 133/269			

Figure 4.5.32: PM₁₀ emission inventory comparison

Figure 4.5.33: PM_{2.5} emission inventory comparison

	D3.3: Report on AQ and GHGs concentration at the ground level in the	ICARUS cities	
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 134/269

4.5.4 The GHGs Modeling result

Figure 4.5.34: (a),(b) CO₂ and CH₄ Daily average concentrations . (c),(d) CO₂ and CH₄ concentrations of the most polluted day

4.5.5 Conclusions

For Athens greater area, clusters 1,2,3,6 and 10 could be categorized in cold period and on the other hand clusters 4,5,7 and 9 in warm period.

In clusters 4 and 10 there is a linear increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 3,8 and 9 show a linear decrease in frequency occurrence.

Heat waves occurrence shows an increased rate. The 5-year period 2046-2050 shows the highest number of heat waves. The most heat waves were associated with clusters 4 and 5 which correspond to clusters with days belong to warm period.

Cluster 8 is characterized with elevated NO_2 concentrations, cluster 4 with elevated O_3 concentrations and cluster 3 with elevated PM concentrations.

 NO_2 concentrations show a decreasing trend. There is one day in which the daily maximum concentration is below the EU and WHO yearly limit of $40\mu g/m^3$. The maximum hourly concentrations are below the limit of $200\mu g/m^3$.

For O_3 concentrations the picture is mixed. Only in one day the daily maximum concentration is below WHO 8hr limit of $100\mu g/m^3$. All maximum hourly concentrations are above the WHO limit.

 PM_{10} daily maximum concentrations in one day exceed the WHO yearly limit of $20\mu g/m^3$, however all concentrations are below the daily WHO limit of $50\mu g/m^3$ and there is a clear decreasing trend.

 $PM_{2.5}$ concentrations are following a decreasing trend. The daily maximum concentrations are below the WHO yearly limit of $10\mu g/m^3$ in two days.

For BaP concentrations, there is a clear decreasing trend. All days are above WHO annual limit of 0.12ng/m³ however one day almost reaches the WHO limit and two days are on and below the EU annual limit of 1ng/m³.

There is a decreasing trend in NO_2 and PM concentrations and a slight decrease in O_3 indicating the positive effect on emission reductions intervention; a quality check of the emission inventory could clarify more the outcome.

4.6 Thessaloniki

4.6.1 PCA results

The PCA analysis applied to the Thessaloniki data has led to the following results.

Three (3) principal components have been identified as factors for the cluster analysis (Table 4.6.1). Principal Components (PC) explaining 73.71% of the total variance in the initial data.

Factor 1 explains 34.23% of the total variance and contains the mean daily temperature, down ward short-wave radiation, atmospheric boundary layer thickness precipitation and a negative sign of surface pressure.

Factor 2 explains 23.12% of the total variance and contains the, the U and V wind component.

Factor 3 explains 16.34% of the total variance and contains the mean daily temperature range and a negative sign of precipitation and RH.

	Component		
	1	2	3
Downward short-wave surface radiation	.858		
Temperature	.817		
Atmospheric boundary layer thickness	.741		
Surface pressure	633		
U wind		861	
V wind		.773	
Precipitation			790
Temperature Range			.665
RH			635

Table 4.6.1:	The	Principal	Components	results
10010 4.0.11	inc	i i iiicipui	components	results

4.6.2 Clustering results

Cluster description and trends

As explained in 3.4.4 the selected clusters of the city of Thessaloniki are 8. In Figure 4.6.1 are shown the number of days per cluster, where clusters 1,8 have the most days and cluster 4 and 5 have the less. The monthly distribution per cluster is presented in Table 4.6.2 and in Figure 4.6.2. By dividing the year in two periods, cold and warm, clusters 3,5,6 and 8 could be categorized in cold period and on the other hand clusters 1,2 and 7 in warm period.

	D3.3: Report on AQ and GHGs concentration	at the ground leve	el in the
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 137/269

Figure 4.6.1: Number of Days per cluster

		Mont	h				/		1					Total
		wonu	n											TOLAI
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Cluster 8	1	0	22	114	426	458	505	694	110 0	852	115	1	0	4287
	2	30	76	122	212	354	454	482	236	268	194	60	24	2512
	3	415	327	289	50	1	0	0	0	16	208	313	384	2003
	4	44	42	70	70	77	138	136	33	30	61	47	42	790
	5	180	217	289	173	83	13	1	5	37	90	127	127	1342
	6	385	207	165	71	14	1	0	1	17	197	341	413	1812
	7	6	36	124	393	554	389	237	175	200	56	17	3	2190
	8	490	485	377	105	9	0	0	0	80	629	594	557	3326
Total		155	141	155	150	155	150	155	155	150	155	150	155	1826
		0	2	0	0	0	0	0	0	0	0	0	0	2

Table 4.6.2: Monthly distribution per cluster

	D3.3: Report on AQ and GHGs concentration at the ground level in the					
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public			
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 138/269			

Figure 4.6.2: Visualized bar chart of monthly distribution per cluster

A trend analysis of the 5-year frequency of each cluster (Figure 4.6.3). There is an evidence that in clusters 1,7 and 8 there is a linear increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 3 and 4 show a linear decrease in frequency occurrence. In the rest clusters no clear trends could be pointed out.

Figure 4.6.3: Cluster 1-8 frequency trends

Cluster characterization

The clusters' implementation is based on the mean values of weather parameters which are displayed in Table 4.6.3.

	Cluster							
	1	2	3	4	5	6	7	8
	Mean (SD)							
Temperature (°C)	23,41 (4,96)	20,52 (5,54)	7,45 (5,02)	16,3 (7,2)	8,09 (5,29)	9,67 (4,48)	19,33 (5,78)	10,66 (4,91)
Daily Temperature Range (°C)	12,11 (1,5)	9,22 (1,5)	8,35 (1,91)	6,21 (1,88)	7,2 (1,7)	6,67 (1,82)	11,31 (1,68)	10,11 (1,71)
Relative Humidity (%)	50,35 (7,63)	63,63 (7,04)	51,48 (9,08)	77,68 (6,79)	48,08 (9,03)	74,38 (9,52)	48,32 (7,19)	58,57 (10,37)
Surface Pressure (Pa)	99532,96 (482,58)	98952,19 (548,3)	100095,21 (766,9)	98856,65 (658,2)	99151,84 (787,98)	99686,72 (793,53)	99003,77 (569,2)	100607,47 (680,25)
Precipitation (kg/m2/s)	0,000003 (0,000006)	0,000039 (0,000038)	0,000003 (0,000009)	0,000192 (0,000103)	0,000008 (0,000019)	0,000027 (0,000033)	0,000006 (0,000011)	0,000001 (0,000004)
Downward Short Wave Radiation	303,84 (45,23)	260,26 (73,78)	146,35 (55,42)	170,96 (96,52)	192,51 (77,38)	96,25 (48,48)	306,42 (55,67)	149,46 (53,77)
u wind component (m/s)	-0,45 (0,98)	-0,57 (1,24)	1,54 (0,91)	-1,73 (2,01)	3,4 (1,41)	-1,01 (1,39)	2 (1,21)	-0,37 (0,8)
v wind component (m/s)	0,97 (1,46)	1,57 (2,13)	-2,61 (2,14)	0,4 (2,44)	-4,59 (2,77)	1,38 (2,29)	-1,16 (2,39)	0,71 (1,41)
V wind (m/s)	1,7 (1,16)	2,35 (1,82)	3,49 (1,56)	2,93 (2,12)	6,3 (1,63)	2,56 (1,89)	3,27 (1,33)	1,44 (1,1)
Atmospheric Boundary Layer Thickness (m)	710,86 (167,55)	666,95 (145,54)	549,23 (159,36)	508,23 (150,57)	950,08 (266,96)	357,61 (146,65)	948,41 (165,97)	310,26 (138,69)

Table 4.6.3	Summary	of the 8	clusters
10016 4.0.0.	Junnury	0 1 1 1 0 1 1 1 1 1 1 1 1 1 1	CIUSICIS

In addition to the previous Table 4.6.3, Figure 4.6.4 presents the mean normalized (z-score) variables of each cluster, respectively showing the differences of the parameters per cluster.

Figure 4.6.4: Normalized variables (z-score) averaged for each cluster

Ó	D3.3: Report on AQ and GHGs concentration at the ground level in the		
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 141/269

Daily, 10-meter from ground level, wind data were used to create the wind roses per each cluster as they are shown in Figures 4.6.5-4.5.12. Each wind direction distribution per cluster is presented in more details in Table 4.6.4.

Figure 4.6.5: Wind Rose - Cluster 1

Figure 4.6.6: Wind Rose - Cluster 2

	D3.3: Report on AQ and GHGs concentration at the ground level in the		
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 142/269

Figure 4.6.7: Wind Rose - Cluster 3

Figure 4.6.8: Wind Rose - Cluster 4

	D3.3: Report on AQ and GHGs concentration at the ground level in the		
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 143/269

Figure 4.6.9: Wind Rose - Cluster 5

Figure 4.6.10: Wind Rose - Cluster 6

	D3.3: Report on AQ and GHGs concentration at the ground level in the		
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 144/269

Figure 4.6.11: Wind Rose - Cluster 7

Figure 4.6.12: Wind Rose - Cluster 8
	D3.3: Report on AQ and GHGs concentration at the gro	ound level in the	ICARUS cities
9	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 145/269

Table 4.6.4: 16 Wind Direction distribution per cluster

										Wir	nd16								Total
			S	SSW	SW	WSW	W	WNW	NW	NNW	Ν	NNE	NE	ENE	E	ESE	SE	SSE	
Cluster8	1	Count	601	264	155	117	86	65	92	110	89	112	166	205	255	274	547	1149	4287
		% within Cluster8	14.0%	6.2%	3.6%	2.7%	2.0%	1.5%	2.1%	2.6%	2.1%	2.6%	3.9%	4.8%	5.9%	6.4%	12.8%	26.8%	100.0%
	2	Count	433	177	82	43	28	44	48	81	93	57	54	79	100	163	405	625	2512
		% within Cluster8	17.2%	7.0%	3.3%	1.7%	1.1%	1.8%	1.9%	3.2%	3.7%	2.3%	2.1%	3.1%	4.0%	6.5%	16.1%	24.9%	100.0%
	3	Count	5	26	58	111	112	116	207	1161	181	15	5	1	1	2	2	0	2003
		% within Cluster8	.2%	1.3%	2.9%	5.5%	5.6%	5.8%	10.3%	58.0%	9.0%	.7%	.2%	.0%	.0%	.1%	.1%	0.0%	100.0%
	4	Count	20	6	5	4	5	7	16	43	59	43	53	72	104	128	136	89	790
		% within Cluster8	2.5%	.8%	.6%	.5%	.6%	.9%	2.0%	5.4%	7.5%	5.4%	6.7%	9.1%	13.2%	16.2%	17.2%	11.3%	100.0%
	5	Count	0	0	8	57	103	121	237	782	33	1	0	0	0	0	0	0	1342
		% within Cluster8	0.0%	0.0%	.6%	4.2%	7.7%	9.0%	17.7%	58.3%	2.5%	.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%
-	6	Count	181	76	22	21	16	18	26	62	102	57	54	64	124	165	329	495	1812
		% within Cluster8	10.0%	4.2%	1.2%	1.2%	.9%	1.0%	1.4%	3.4%	5.6%	3.1%	3.0%	3.5%	6.8%	9.1%	18.2%	27.3%	100.0%
	7	Count	9	76	207	220	249	280	368	595	146	34	5	0	0	1	0	0	2190
		% within Cluster8	.4%	3.5%	9.5%	10.0%	11.4%	12.8%	16.8%	27.2%	6.7%	1.6%	.2%	0.0%	0.0%	.0%	0.0%	0.0%	100.0%
	8	Count	322	123	71	47	40	43	97	312	167	86	80	61	105	217	625	930	3326
		% within Cluster8	9.7%	3.7%	2.1%	1.4%	1.2%	1.3%	2.9%	9.4%	5.0%	2.6%	2.4%	1.8%	3.2%	6.5%	18.8%	28.0%	100.0%
Tota		Count	1571	748	608	620	639	694	1091	3146	870	405	417	482	689	950	2044	3288	18262
		% within Cluster8	8.6%	4.1%	3.3%	3.4%	3.5%	3.8%	6.0%	17.2%	4.8%	2.2%	2.3%	2.6%	3.8%	5.2%	11.2%	18.0%	100.0%

	D3.3: Report on AQ and GHGs concentration at the ground level in the						
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public				
ICARUS	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 146/269				

3.4.5.1 Clusters and local Heat Waves

In Figures 4.6.13 and 4.6.14 are presented the heat waves occurrence per 5-year period and per cluster. Heat wave occurrence show an increasing rate after 2031.The 5-year period 2046-2050 shows the highest number of heat waves. The most heat waves were associated with cluster 1 which correspond to cluster with days belong to warm period (see Table 4.6.2).

Figure 4.6.13: Heat Waves per 5-year period

Figure 4.6.14: Heat Waves per cluster

3.4.5.2 Clusters versus Air Quality level

As it can be seen in Table 4.1 five observation stations have been used for the present analysis. The descriptive statistics for NO_2 , O_3 and PM_{10} is given in Table 4.6.5.

		MEAN_NO2	MEAN_03	MEAN_PM10			
Mean		31.7384	57.2316	45.6042			
Std. Deviation		13.29536	25.84842	21.34237			
Minimum		5.65	3.63	9.00			
Maximum		95.67	150.61	231.50			
Percentiles	5	12.9649	17.7000	20.0589			
	25	21.4730	37.8610	30.9922			
	50	30.2970	55.2500	41.2000			
	75	40.2290	75.2916	55.6875			
	95	55.8748	102.0947	86.3931			

Table 4.6.5: Air	pollutants	descriptive	statistics
	ponutunts	ucscriptive	Statistics

	D3.3: Report on AQ and GHGs concentration	n at the ground I	evel in the
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 147/269

Table 4.6.6 presents the pollutants' concentrations per cluster. Higher mean NO_2 concentrations are observed in clusters 3,6 and 8. Higher mean O_3 concentrations are observed in clusters 1,2 and 7. Higher mean PM_{10} concentrations are observed in clusters 3,6 and 8.

	Cluster									
	1	2	3	4	5	6	7	8		
	Mean									
	(SD)									
PM10 (μg/m3)	40,56	42,75	52,13	44,73	45,64	50,44	42,68	50,1		
	(15,39)	(17,51)	(27,05)	(16,86)	(23,67)	(23,67)	(19,59)	(24,22)		
O3 (µg/m3)	72,31	68,09	40,52	61,47	49,12	42,77	70,72	41,2		
	(22,82)	(23,77)	(18,84)	(24,68)	(23,14)	(20,8)	(22,4)	(19,09)		
NO2 (µg/m3)	26,91	29,56	36,53	31,54	33,69	35,5	30,25	35,34		
	(11,49)	(12,39)	(14,09)	(12,39)	(13,78)	(13,57)	(11,96)	(13,83)		

Table 4.6.6: Summary pollutant concentrations per cluster

The differences in concentrations per cluster are shown in Figures 4.6.15-4.6.17.

Figure 4.6.15: NO₂ concentration statistics per cluster

-	D3.3: Report on AQ and GHGs concentration	n at the ground I	evel in the
٢	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 148/269

*Figure 4.6.17: PM*₁₀ *concentration statistics per cluster*

Representative Days

In the following Table 4.6.7 are presented the selected RDs per 5-year period and per cluster.

Closest d	ays to centro cluster	ids per	clusters							
oyear per			1	2	3	4	5	6	7	8
5 year	2001-2005	1	2004-09-05	2005-06-02	2002-12-06	2001-11-03	2005-12-12	2003-03-25	2003-05-20	2002-03-21
penou	2006-2010	2	2006-07-25	2006-08-03	2006-10-21	2007-05-09	2009-10-05	2006-01-25	2007-04-25	2009-11-01
	2011-2015	3	2012-08-20	2013-08-10	2015-11-25	2015-06-28	2013-03-01	2011-09-30	2013-05-17	2014-11-25
	2016-2020	4	2019-07-02	2019-07-08	2018-01-12	2017-04-19	2017-01-21	2019-12-02	2018-05-18	2016-01-30
	2021-2025	5	2021-08-11	2022-06-01	2025-02-11	2024-06-10	2022-01-25	2022-01-28	2022-05-08	2023-02-09
	2026-2030	6	2029-09-01	2026-06-03	2030-12-13	2026-06-02	2029-10-27	2030-11-30	2028-06-05	2030-12-14
	2031-2035	7	2035-07-29	2034-04-22	2035-02-2 6	2034-04-28	2031-01-15	2032-01-15	2031-09-22	2031-01-19
	2036-2040	8	2037-06-04	2037-08-02	2038-12-08	2036-10-04	2039-01-08	2040-02-20	2040-05-05	2038-11-07
	2041-2045	9	2042-08-30	2042-06-01	2042-02-19	2042-04-19	2042-02-14	2041-01-15	2044-05-29	2045-11-03
	2046-2050	10	2048-05-22	2048-04-23	2048-10-22	2048-06-15	2050-10-14	2047-12-19	2049-05-31	2050-11-29

		,			
Tahle 4 6 7.	Renresentative	davs ne	r cluster n	ind Svear	nerind
10010 4.0.7.	nepresentative	uuys pe	i ciustei u	ma Sycar	penou

Selected Clusters and RDs for modeling purposes

Selected RDs will be used to perform targeted weather and air quality simulations within each selected 5-year period estimating hourly/daily concentrations of the priority pollutants to assess the climatic effect on air quality evolution and the characteristics of air quality future episodes. The selection was based on 3-year periods (2016-2020, 2021-2025 and 2031-2035) and on the clusters with the most elevated concentrations of PM₁₀, NO₂ and O₃. In the case of Thessaloniki, cluster 1 for the case of O₃ and cluster 3 for the case of NO₂ and PM₁₀. In Table 4.5.8 are presented the selected days which was used for modeling purposes.

Period	Cluster 1 (O3)	Cluster 3 (NO2, PM)
2016-2020	2019-07-02	2018-01-12
2021-2025	2021-08-11	2025-02-11
2031-2035	2035-07-29	2035-02-26

	D3.3: Report on AQ and GHGs concentration at the ground level in the							
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public					
	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 150/269					

4.6.3 Air Quality Modeling results

4.6.3.1 Overall results

In Figure 4.6.18 the daily average concentrations of NO₂, O₃, PM_{10} and $PM_{2.5}$ for selected RDs are presented.

Figure 4.6.18: Daily average concentrations

In Figure 4.6.19 the obtained daily averaged concentrations are compared based on USTUTT and EGDAR HTAP emission inventories respectively. The results seem not to differ significantly.

Figure 4.6.19: Daily average concentrations - USTUTT vs EDGAR HTAP comparison

4.6.3.2 Clusters results

NO₂ Concentrations (Cluster 3)

In Figure 4.6.20, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.6.21.

Concentrations show a mixed picture. There is only one day in which the daily maximum concentration is below the EU and WHO yearly limit of $40\mu g/m^3$. The maximum hourly concentrations are below the limit of $200\mu g/m^3$.

O₃ Concentrations (Cluster 1)

In Figure 4.6.22, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.6.23.

The daily average concentrations show an increasing trend with daily maximum values exceeding the WHO 8hr limit of $100\mu g/m^3$. The maximum hourly concentrations exceed this limit as well as the EU 8hr limit of $120\mu g/m^3$.

PM₁₀ Concentrations (Cluster 3)

In Figure 4.6.24, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.6.25.

The daily maximum concentrations are above the WHO yearly limit of $20\mu g/m^3$ showing a decreasing trend. In one day, the daily maximum concentration in also above the daily WHO limit of $50\mu g/m^3$.

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities								
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public						
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 152/269						

NO₂-Cluster 3

Figure 4.6.20: NO₂ Day concentrations

Figure 4.6.21: Hourly NO₂ concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities								
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public						
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 153/269						

O₃-Cluster 1

Figure 4.6.23: O₃ Hourly concentrations

Ì	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities								
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public						
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 154/269						

PM₁₀-Cluster 3

Figure 4.6.24: PM₁₀ Daily concentrations

Figure 4.6.25: PM₁₀ Hourly concentrations

D3.3: Report on AQ and GHGs concentration at the ground level in the								
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public					
	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 155/269					

PM_{2.5} Concentrations (Cluster 3)

In Figure 4.6.28, the results are presented in terms of concentrations average, daily maximum and hourly maximum.

The daily maximum concentrations are following a decreasing trend. The daily maximum concentrations are above the WHO yearly limit of 10μ g/m³.

Figure 4.6.26: PM_{2.5} Day concentrations

Figure 4.6.27 presents the estimated BaP daily concentrations contained in PM_{2.5.} There is a decreasing trend. All days are above WHO annual limit of 0.12ng/m³ however one day is below the EU annual limit of 1ng/m³.

Figure 4.6.27: BaP daily concentrations

4.6.3.3 The Emission Inventory effect

Figures 4.6.28, 4.6.29, 4.6.30 and 4.6.31 illustrate the emission inventory temporal change effect on NO₂, O₃, PM₁₀ and PM_{2.5} concentration levels respectively. There is a slight decreasing trend in all pollutants indicating the positive effect on emission reductions intervention.

Figure 4.6.28: NO₂ emission inventory comparison

Figure 4.6.29: O₃ emission inventory comparison

D3.3: Report on AQ and GHGs concentration at the ground level in the								
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public						
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 157/269						

Figure 4.6.30: PM₁₀ emission inventory comparison

Figure 4.6.31: PM_{2.5} emission inventory comparison

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities							
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public					
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 158/269					

4.6.4 The GHGs Modeling results

Figure 4.6.32: (a),(b) CO₂ and CH₄ Daily average concentrations . (c),(d) CO₂ and CH₄ concentrations of the most polluted day

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS									
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public							
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 159/269							

4.6.5 Conclusions

For Thessaloniki greater area, clusters 3,5,6 and 8 could be categorized in cold period and on the other hand clusters 1,2 and 7 in warm period.

In clusters 1,7 and 8 there is a linear increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 3 and 4 show a linear decrease in frequency occurrence.

Heat wave occurrence show an increasing rate after 2031. The 5-year period 2046-2050 shows the highest number of heat waves. The most heat waves were associated with cluster 1 which correspond to cluster with days belong to warm period.

Cluster 3 is characterized with elevated NO_2 and PM concentrations and cluster 1 with elevated O_3 concentrations.

 NO_2 concentrations show a mixed picture. There is only one day in which the daily maximum concentration is below the EU and WHO yearly limit of $40\mu g/m^3$. The maximum hourly concentrations are below the limit of $200\mu g/m^3$.

 O_3 daily average concentrations show an increasing trend with daily maximum values exceeding the WHO 8hr limit of 100μ g/m³. The maximum hourly concentrations exceed this limit as well as the EU 8hr limit of 120μ g/m³.

 PM_{10} daily maximum concentrations are above the WHO yearly limit of $20\mu g/m^3$ showing a decreasing trend. In one day, the daily maximum concentration in also above the daily WHO limit of $50\mu g/m^3$.

 $PM_{2.5}$ daily maximum concentrations are following a decreasing trend. The daily maximum concentrations are above the WHO yearly limit of $10\mu g/m^3$.

For BaP concentrations, there is a decreasing trend. All days are above WHO annual limit of 0.12ng/m³ however one day is below the EU annual limit of 1ng/m³.

There is a slight decreasing trend in all pollutants indicating the positive effect on emission reductions intervention.

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS									
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public							
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 160/269							

4.7 Milan

4.7.1 PCA results

The PCA analysis applied to the Milan data has led to the following results.

Three (3) principal components have been identified as factors for the cluster analysis (Table 4.7.1). Principal Components (PC) explaining 74.29% of the total variance in the initial data.

Factor 1 explains 35.59% of the total variance and contains negative sign of U wind component, V wind component, RH and precipitation.

Factor 2 explains 22.52% of the total variance and contains the 2 temperature variables, mean, daily temperature range, and the down ward short-wave radiation.

Factor 3 explains 16.17% of the total variance and contains precipitation and a negative sign of atmospheric boundary layer thickness and surface pressure.

	Component				
	1	2	3		
RH	.841				
U wind	744				
V wind	.737				
Precipitation	.669				
Downward short-wave surface radiation		.918			
Temperature		.841			
Temperature Range		.780			
Surface pressure			.743		
Atmospheric boundary layer thickness			598		

Table 4.7.1: The Principal Components results

4.7.2 Clustering results

Cluster description and trends

As explained in 3.4.4 the selected clusters of the city of Milan are 8. In Figure 4.7.1 are shown the number of days per cluster, where clusters 4 and 8 have the most days and cluster 5 and 6 have the less. The monthly distribution per cluster is presented in Table 4.7.2 and in Figure 4.7.2. By dividing the year in two periods, cold and warm, clusters 2,3,4 and 5 could be categorized in cold period and on the other hand clusters 1,6,7 and 8 in warm period.

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS							
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public					
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 161/269					

Figure 4.7.1: Number of Days per cluster

Month							Total							
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Cluster8	1	0	7	119	415	535	368	74	119	234	60	0	0	1931
	2	344	360	316	57	13	2	0	2	28	291	350	361	2124
	3	536	331	200	59	9	1	0	2	44	226	424	581	2413
	4	520	511	469	56	0	0	0	0	56	603	588	478	3281
	5	112	145	207	184	159	44	8	11	47	81	75	77	1150
	6	37	52	67	56	92	114	175	147	162	89	57	53	1101
	7	1	3	41	126	230	437	704	513	316	68	6	0	2445
	8	0	3	131	547	512	534	589	756	613	132	0	0	3817
Total		1550	1412	1550	1500	1550	1500	1550	1550	1500	1550	1500	1550	18262

Table 4.7.2: Monthly distribution per cluster

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS							
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public					
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 162/269					

Figure 4.7.2: Visualized bar chart of monthly distribution per cluster

A trend analysis of the 5-year frequency of each cluster (Figure 4.7.3). There is an evidence that in clusters 4 and 8 there is a slight increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 1,3,5 and 6 show a linear decrease in frequency occurrence. In the rest clusters no clear trends could be pointed out.

Figure 4.7.3: Cluster 1-8 frequency trends

Cluster characterization

The clusters' implementation is based on the mean values of weather parameters which are displayed in Table 4.7.3.

Г

D3.3: Report on AQ and GHGs concentration a	t the ground level	in the ICARUS
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 164/269

٦

	Cluster	Cluster								
	1	2	3	4	5	6	7	8		
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)		
Temperature (°C)	15,37	7,02	6 (4,66)	7,55	9,27	15,79	20,53	19,58		
	(4,29)	(4,09)		(4,59)	(4,93)	(6,48)	(4,53)	(5,08)		
Daily Temperature	10,48	8,13	4,96	8,95	6,87	5,31	8,71	11,63		
Range (°C)	(1,74)	(1,75)	(1,88)	(2,19)	(1,69)	(1,67)	(1,43)	(1,61)		
Relative Humidity	42,12	48,36	80,89	63,6	34,79	83,7	72,54	58,37		
(%)	(8,9)	(12,19)	(11,72)	(14,82)	(8,59)	(6,82)	(7,85)	(10,64)		
Surface Pressure	99119,15	99350,19	99518,11	100798,59	98934,68	98858,67	99245,81	99900,3		
(Pa)	(691,46)	(904,56)	(963,2)	(817,34)	(915,06)	(774,1)	(616,19)	(593,63)		
Precipitation	0,000004	0,000004	0,000047	0,000001	0,000005	0,000288	0,000076	0,000005		
(kg/m2/s)	(0,000014	(0,000014	(0,000059	(0,000006	(0,000029	(0,000136	(0,000062	(0,000012		
))))))))		
Downward Short	300,95	127,36	66,23	126,07	204,18	134,1	264,93	293,51		
Wave Radiation	(60,02)	(46,49)	(40,33)	(47,41)	(89,52)	(84,23)	(58,75)	(54,91)		
u wind component	0,72	0,78	-1,4 (1,49)	0,04	1,61	-2,97	-1,38 (1,2)	-0,3 (1,14)		
(m/s)	(1,06)	(1,34)		(1,31)	(1,72)	(1,96)				
v wind component	-2,85	-2 (1,61)	0 (1,04)	-0,34	-6,02	0,39	0,05	-0,12		
(m/s)	(1,62)			(0,67)	(2,05)	(1,69)	(0,94)	(0,75)		
V wind (m/s)	3,22	2,64	1,9 (1,28)	1,26	6,55	3,47	1,76	1,21		
	(1,42)	(1,41)		(0,84)	(1,76)	(1,91)	(1,06)	(0,71)		
Atmospheric	875,18	464,82	240,22	234,19	1065,68	474,25	562,96	573,29		
Boundary Layer	(188,62)	(184)	(137,76)	(127,26)	(276,57)	(166,68)	(139,15)	(152,48)		
Thickness (m)										

Table 4.7.3: Summar	v of the 8 clusters
	y of the o clusters

In addition to the previous Table 4.7.3, Figure 4.7.4 presents the mean normalized (z-score) variables of each cluster, respectively showing the differences of the parameters per cluster.

Figure 4.7.4: Normalized variables (z-score) averaged for each cluster

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS							
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public					
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 165/269					

Daily, 10-meter from ground level, wind data were used to create the wind roses per each cluster as they are shown in Figures 4.7.5-4.7.12. Each wind direction distribution per cluster is presented in more details in Table 4.7.4.

Figure 4.7.5: Wind Rose - Cluster 1

Figure 4.7.6: Wind Rose - Cluster 2

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS							
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public					
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 166/269					

Figure 4.7.7: Wind Rose - Cluster 3

Figure 4.7.8: Wind Rose - Cluster 4

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS							
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public					
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 167/269					

Figure 4.7.9: Wind Rose - Cluster 5

Figure 4.7.10: Wind Rose - Cluster 6

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS							
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public					
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 168/269					

Figure 4.7.11: Wind Rose - Cluster 7

Figure 4.7.12: Wind Rose - Cluster 8

-	D3.3: Report on AQ and GHGs concentration at the ground level in the					
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public			
	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 169/269			

										Wir	d16								Total
			S	SSW	SW	WSW	W	WNW	NW	NNW	Ν	NNE	NE	ENE	E	ESE	SE	SSE	
Cluster8	1	Count	1	2	17	19	43	77	221	645	701	146	38	15	3	2	0	1	1931
		% within Cluster8	0.1%	0.1%	0.9%	1.0%	2.2%	4.0%	11.4%	33.4%	36.3%	7.6%	2.0%	0.8%	0.2%	0.1%	0.0%	0.1%	100.0%
	2	Count	3	7	24	53	80	200	349	508	535	180	70	66	33	10	5	1	2124
		% within Cluster8	0.1%	0.3%	1.1%	2.5%	3.8%	9.4%	16.4%	23.9%	25.2%	8.5%	3.3%	3.1%	1.6%	0.5%	0.2%	0.0%	100.0%
	3	Count	36	24	13	16	53	70	74	75	103	124	192	382	773	364	76	38	2413
		% within Cluster8	1.5%	1.0%	0.5%	0.7%	2.2%	2.9%	3.1%	3.1%	4.3%	5.1%	8.0%	15.8%	32.0%	15.1%	3.1%	1.6%	100.0%
	4	Count	18	28	41	94	355	444	304	232	179	167	229	376	561	186	44	23	3281
		% within Cluster8	0.5%	0.9%	1.2%	2.9%	10.8%	13.5%	9.3%	7.1%	5.5%	5.1%	7.0%	11.5%	17.1%	5.7%	1.3%	0.7%	100.0%
	5	Count	0	0	0	1	16	40	98	445	518	31	1	0	0	0	0	0	1150
		% within Cluster8	0.0%	0.0%	0.0%	0.1%	1.4%	3.5%	8.5%	38.7%	45.0%	2.7%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%
	6	Count	9	3	2	2	1	4	3	7	24	50	60	145	329	376	65	21	1101
		% within Cluster8	0.8%	0.3%	0.2%	0.2%	0.1%	0.4%	0.3%	0.6%	2.2%	4.5%	5.4%	13.2%	29.9%	34.2%	5.9%	1.9%	100.0%
	7	Count	55	46	28	27	21	19	34	45	61	93	163	408	865	411	103	66	2445
		% within Cluster8	2.2%	1.9%	1.1%	1.1%	0.9%	0.8%	1.4%	1.8%	2.5%	3.8%	6.7%	16.7%	35.4%	16.8%	4.2%	2.7%	100.0%
	8	Count	78	102	141	244	251	166	164	180	239	195	284	502	698	373	114	86	3817
		% within Cluster8	2.0%	2.7%	3.7%	6.4%	6.6%	4.3%	4.3%	4.7%	6.3%	5.1%	7.4%	13.2%	18.3%	9.8%	3.0%	2.3%	100.0%
Total		Count	200	212	266	456	820	1020	1247	2137	2360	986	1037	1894	3262	1722	407	236	18262
		% within Cluster8	1.1%	1.2%	1.5%	2.5%	4.5%	5.6%	6.8%	11.7%	12.9%	5.4%	5.7%	10.4%	17.9%	9.4%	2.2%	1.3%	100.0%

Clusters and local Heat Waves

In Figures 4.7.13 and 4.7.12 are presented the heat waves occurrence per 5-year period and per cluster. The most heat waves seem to occur after 2036. The 5-year period 2041-2045 shows the highest number of heat waves, while the next 5-year period shows a decrease. The most heat waves were associated with clusters 7 and 8 which correspond to clusters with days belong to warm period (see Table 4.7.2).

Figure 4.7.13: Heat Waves per 5-year period

Figure 4.7.14: Heat Waves per cluster

Clusters versus Air Quality level

As it can be seen in Table 4.1 two observation stations have been used for the present analysis. The descriptive statistics for NO_2 , O_3 and PM_{10} is given in Table 4.7.5.

Table 4.7.5: Air pollutants descriptive statistics							
		NO2	03	PM10			
Mean		58.04808	42.82351	48.94622			
Std. Deviatio	'n	23.774786	31.911888	30.993144			
Minimum		6.333	6.333 1.625				
Maximum		203.500	144.917	309.000			
Percentiles	5	24.83300	6.08300	15.00000			
	25	41.12500	12.91700	27.00000			
	50	55.58300	36.10400	40.00000			
	75	71.22900	69.11425	63.00000			
	95	99.42930	98.99975	113.00000			

Table 4.7.5: Air p	ollutants	descriptive	statistics

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS				
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public		
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 171/269		

Table 4.7.6 presents the pollutants' concentrations per cluster. Higher mean NO_2 concentrations are observed in clusters 2,3 and 4. Higher mean O_3 concentrations are observed in clusters 7 and 8. Higher mean PM_{10} concentrations are observed in clusters 2,3 and 4.

	Cluster							
	1	2	3	4	5	6	7	8
	Mean							
	(SD)							
PM10 (μg/m3)	34,37	64,11	68,92	62,62	53,68	43,31	32,15	31,66
	(15,1)	(34,07)	(37,82)	(31,41)	(31,96)	(25,87)	(15,15)	(14,56)
O3 (μg/m3)	63,59	18,17	14,69	19,75	32,97	52,39	72,05	65,83
	(25,23)	(14,81)	(11,08)	(14,53)	(25,29)	(32,28)	(24,63)	(25,19)
NO2 (μg/m3)	48,52	69,26	73,7	70,27	62,47	53,74	44,22	43,56
	(16,65)	(22,02)	(23,38)	(21,45)	(20,76)	(22,39)	(18,83)	(17,37)

Table 4.7.6: Summary pollutant concentrations per cluster

The differences in concentrations per cluster are shown in Figures 4.7.15-4.7.17.

Figure 4.7.15: NO₂ concentration statistics per cluster

-	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS				
9	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public		
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 172/269		

Figure 4.7.16: O₃ concentration statistics per cluster

Figure 4.7.17: PM₁₀ concentration statistics per cluster

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS					
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public			
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 173/269			

Representative Days

In the following Table 4.7.7 are presented the selected RDs per 5-year period and per cluster.

Closest days to centroids per 5year per cluster		Clusters								
		1	2	3	4	5	6	7	8	
5 year period	2001-2005	1	2005/05/09	2002/02/03	2004/11/21	2002/02/11	2005/10/09	2004/09/10	2001/05/08	2005/05/05
	2006-2010	2	2009/05/04	2008/10/31	2008/10/27	2008/03/04	2010/10/02	2009/06/28	2006/07/11	2007/05/07
	2011-2015	3	2013/04/29	2014/11/26	2013/03/11	2014/01/26	2012/10/08	2012/05/13	2013/06/25	2011/08/31
	2016-2020	4	2016/05/15	2018/11/16	2019/10/29	2018/02/15	2016/10/10	2020/09/09	2017/07/30	2019/05/11
	2021-2025	5	2024/08/28	2021/01/25	2022/10/26	2024/11/05	2021/03/14	2025/08/29	2025/07/30	2021/05/15
	2026-2030	6	2028/04/28	2026/02/03	2030/11/28	2028/12/22	2029/02/20	2030/06/25	2030/06/11	2030/08/12
	2031-2035	7	2031/09/02	2033/02/28	2035/12/17	2034/11/22	2032/04/10	2033/07/31	2035/08/16	2034/05/04
	2036-2040	8	2038/05/08	2040/12/14	2037/12/31	2040/03/29	2037/03/23	2038/09/18	2038/08/25	2040/08/31
	2041-2045	9	2045/04/23	2041/11/29	2043/01/22	2041/11/17	2041/03/23	2043/07/04	2045/06/09	2041/05/17
	2046-2050	10	2049/04/25	2046/02/26	2049/02/20	2047/02/25	2047/09/29	2048/09/15	2046/06/25	2047/04/21

Selected Clusters and RDs for modeling purposes

Selected RDs will be used to perform targeted weather and air quality simulations within each selected 5-year period estimating hourly/daily concentrations of the priority pollutants to assess the climatic effect on air quality evolution and the characteristics of air quality future episodes. The selection was based on 3-year periods (2016-2020, 2021-2025 and 2031-2035) and on the clusters with the most elevated concentrations of PM₁₀, NO₂ and O₃. In the case of Milan, cluster 3 recorded the most elevated values of NO₂ and PM₁₀ and cluster 7 for the case of O₃. In Table 4.7.8 are presented the selected days which was used for modeling purposes.

Table 4.7.8: RDs for modeling purpose	S
---------------------------------------	---

Period	Cluster 3 (NO2, PM)	Cluster 7 (O3)
2016-2020	2019-10-29	2017-07-30
2021-2025	2022-10-26	2025-07-30
2031-2035	2035-12-17	2035-08-16

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS				
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public		
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 174/269		

4.7.3 Air Quality Modeling results

4.7.3.1 Overall results

In Figure 4.7.18 the daily average concentrations of NO₂, O₃, PM_{10} and $PM_{2.5}$ for selected RDs are presented.

Figure 4.7.18: Daily average concentrations

In Figure 4.7.19 the obtained daily averaged concentrations are compared based on USTUTT and EGDAR HTAP emission inventories respectively. The results seem not to differ significantly.

Figure 4.7.19: Daily average concentrations - USTUTT vs EDGAR HTAP comparison

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS				
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public		
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 175/269		

4.7.3.2 Clusters results

NO₂ Concentrations (Cluster 3)

In Figure 4.7.20, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.7.21.

The daily maximum concentrations exceed the EU and WHO yearly limit of $40\mu g/m^3$. The maximum hourly concentrations, being above the limit of $200\mu g/m^3$, show a decreasing trend.

O₃ Concentrations (Cluster 7)

In Figure 4.7.22, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.7.23.

The daily maximum values are above the WHO 8hr limit of $100\mu g/m^3$. The maximum hourly concentrations exceed this limit as well as the EU 8hr limit of $120\mu g/m^3$.

PM₁₀ Concentrations (Cluster 3)

In Figure 4.7.24, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.7.25.

The daily maximum concentrations show maximum values above the WHO yearly limit of $20\mu g/m^3$ with a decreasing rate. The hourly maximum concentrations have a decrease rate while showing values that exceed the WHO daily limit of $50\mu g/m^3$.

	D3.3: Report on AQ and GHGs concentration at the gro	ound level in the IC	ARUS cities
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 176/269

NO₂-Cluster 3

Figure 4.7.20: NO₂ Day concentrations

Figure 4.7.21: Hourly NO₂ concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities			
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public	
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 177/269	

O₃-Cluster 7

Figure 4.7.22: O₃ Daily concentrations

Figure 4.7.23: O₃ Hourly concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities			
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public	
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 178/269	

PM₁₀-Cluster 3

Figure 4.7.24: PM₁₀ Daily concentrations

Figure 4.7.25: PM₁₀ Hourly concentrations

D3.3: Report on AQ and GHGs concentration at the ground level in the				
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public		
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 179/269		

PM_{2.5} Concentrations (Cluster 3)

In Figure 4.7.26, the results are presented in terms of concentrations average, daily maximum and hourly maximum.

The daily and hourly maximum concentrations are following a decreasing trend. The daily maximum concentrations are above the WHO yearly limit of 10μ g/m³.

Figure 4.7.26: PM_{2.5} Day concentrations

Figure 4.7.27 presents the estimated BaP daily concentrations contained in $PM_{2.5}$. All days are above WHO annual limit of $0.12 ng/m^3$ however one day is close to the EU annual limit of $1 ng/m^3$.

Figure 4.7.27: BaP daily concentrations

4.7.3.3 The Emission Inventory effect

Figures 4.7.28, 4.7.29, 4.7.30 and 4.7.31 illustrate the emission inventory temporal change effect on NO_2 , O_3 , PM_{10} and $PM_{2.5}$ concentration levels respectively. There is a decreasing trend in PM pollutants indicating the positive effect on emission reductions intervention. The picture in NO_2 and O_3 concentration levels is mixed.

Figure 4.7.28: NO₂ emission inventory comparison

Figure 4.7.29: O₃ emission inventory comparison

D3.3: Report on AQ and GHGs concentration at the ground level in the					
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public			
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 181/269			

Figure 4.7.30: PM₁₀ emission inventory comparison

Figure 4.7.31: PM_{2.5} emission inventory comparison

	D3.3: Report on AQ and GHGs concentration at the ground level in	n the ICARUS cities	
9	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 182/269

4.7.4 The GHGs Modeling results

Figure 4.7.32: (a),(b) CO₂ and CH₄ Daily average concentrations . (c),(d) CO₂ and CH₄ concentrations of the most polluted day

D3.3: Report on AQ and GHGs concentration at the ground level in the						
WP3 Integrated atmospheric modelling for connecting pressures to	Security:	Public				
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 183/269				

4.7.5 Conclusions

For Milan greater area, clusters 2,3,4 and 5 could be categorized in cold period and on the other hand clusters 1,6,7 and 8 in warm period.

In clusters 4 and 8 there is a slight increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 1,3,5 and 6 show a linear decrease in frequency occurrence.

The most heat waves seem to occur after 2036. The 5-year period 2041-2045 shows the highest number of heat waves, while the next 5-year period shows a decrease. The most heat waves were associated with clusters 7 and 8 which correspond to clusters with days belong to warm period.

Cluster 3 is characterized with elevated NO_2 and PM concentrations and cluster 7 with elevated O_3 concentrations.

 NO_2 daily maximum concentrations exceed the EU and WHO yearly limit of $40\mu g/m^3$. The maximum hourly concentrations, being above the limit of $200\mu g/m^3$, show a decreasing trend.

 O_3 daily maximum values are above the WHO 8hr limit of $100\mu g/m^3$. The maximum hourly concentrations exceed this limit as well as the EU 8hr limit of $120\mu g/m^3$.

 PM_{10} daily maximum concentrations show maximum values above the WHO yearly limit of $20\mu g/m^3$ with a decreasing rate. The hourly maximum concentrations have a decrease rate while showing values that exceed the WHO daily limit of $50\mu g/m^3$.

 $PM_{2.5}$ daily and hourly maximum concentrations are following a decreasing trend. The daily maximum concentrations are above the WHO yearly limit of $10\mu g/m^3$.

For BaP concentrations, all days are above WHO annual limit of 0.12ng/m³ however one day is close to the EU annual limit of 1ng/m³.

There is a decreasing trend in PM pollutants indicating the positive effect on emission reductions intervention. The picture in NO_2 and O_3 concentration levels is mixed.

4.8 Madrid

4.8.1 PCA results

The PCA analysis applied to the Madrid data has led to the following results.

Three (3) principal components have been identified as factors for the cluster analysis (Table 4.8.1). Principal Components (PC) explaining 780.8% of the total variance in the initial data.

Factor 1 explains 43.34% of the total variance and contains the 2 temperature variables, mean, daily temperature range, the down ward short-wave radiation and a negative sign of RH and U wind component.

Factor 2 explains 23.07% of the total variance and contains the atmospheric boundary layer thickness and a negative sign of surface pressure.

Factor 3 explains 11.67% of the total variance and contains precipitation and V wind component.

	Component			
	1	2	3	
Temperature Range	.802			
Temperature	.772			
RH	768			
U wind	749			
Downward short-wave surface radiation	.744			
Surface pressure		867		
Atmospheric boundary layer thickness		.863		
V wind			.790	
Precipitation			.772	

Table 4.8.1: The Principal Components results

4.8.2 Clustering results

Cluster description and trends

As explained in 3.4.4 the selected clusters of the city of Madrid are 8. In Figure 4.8.1 are shown the number of days per cluster, where clusters 2,4 and 7 have the most days and cluster 3 and 5 have the less. The monthly distribution per cluster is presented in Table 4.8.2 and in Figure 4.8.2. By dividing the year in two periods, cold and warm, clusters 1,2,8 and 5 could be categorized in cold period and on the other hand clusters 4,7 and 9 in warm period.

D3.3: Report on AQ and GHGs concentration at the ground level in the						
WP3 Integrated atmospheric modelling for connecting pressures to	Security:	Public				
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 185/269				

Figure 4.8.1: Number of Days per cluster

		Mont	h											Total
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Cluster1	1	245	252	271	130	22	5	0	0	19	249	208	203	1604
0	2	541	487	255	5	0	0	0	0	0	120	530	498	2436
	3	102	125	153	160	163	60	16	13	66	110	95	87	1150
	4	0	0	26	249	618	551	446	336	401	62	0	0	2689
	5	56	59	54	19	12	9	27	35	17	40	54	94	476
	6	6	32	405	645	251	12	0	5	410	688	63	4	2521
	7	0	0	1	46	367	721	816	822	385	5	0	0	3163
	8	395	214	181	57	5	1	0	0	9	112	308	423	1705
	9	7	20	31	61	55	120	232	330	137	43	14	13	1063
	10	198	223	173	128	57	21	13	9	56	121	228	228	1455
Total		155	141	155	150	155	150	155	155	150	155	150	155	1826
		0	2	0	0	0	0	0	0	0	0	0	0	2

Table 4.8	8.2:	Monthlv	distribution	per	cluster
rabie in			aistingation	per	cruster

-	D3.3: Report on AQ and GHGs concentration at the ground level in the								
0	WP3 Integrated atmospheric modelling for connecting pressures to	Security:	Public						
ICARUS	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 186/269						

Figure 4.8.2: Visualized bar chart of monthly distribution per cluster

A trend analysis of the 5-year frequency of each cluster (Figure 4.8.3). There is an evidence that in clusters 1,8 and 9 there is a linear increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 3,4,5 and 10 show a linear decrease in frequency occurrence. In the rest clusters no clear trends could be pointed out.

D3.3: Report on AQ and GHGs concentration at the ground level in the						
WP3 Integrated atmospheric modelling for connecting pressures to	Security:	Public				
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 187/269				

Figure 4.8.3: Cluster 1-10 frequency trends

D3.3: Report on AQ and GHGs concentration at the ground level in the						
WP3 Integrated atmospheric modelling for connecting pressures to	Security:	Public				
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 188/269				

Cluster characterization

The clusters' implementation is based on the mean values of weather parameters which are displayed in Table 4.8.3.

	Cluster									
	1	2	3	4	5	6	7	8	9	10
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
Temperature (°C)	7,21	7,49	8,25	15,96	11,23	14,58	21,99	7,64	21,08	8,96
	(3,81)	(3,16)	(4,14)	(4,24)	(5,64)	(3,93)	(3,36)	(3,12)	(5,03)	(3,69)
Daily Temperature	7,96	10,55	6,94	10,35	4,93	12,77	12,12	6,22	8,77	5,01
Range (°C)	(2,04)	(2,07)	(1,99)	(1,75)	(1,93)	(2,11)	(1,74)	(2,23)	(2,04)	(1,76)
Relative Humidity	63,82	63,25	57,77	48,78	80,86	50,49	43,67	80,75	58,4	76,5
(%)	(8,79)	(13,22)	(7,63)	(6,72)	(8,11)	(9,84)	(7,13)	(9,17)	(9,62)	(8,28)
Surface Pressure	94326,78	95160,57	93512,72	93859,25	93117,44	94510,76	93980,06	94323,17	93778,13	93271,47
(Pa)	(483,26)	(465,37)	(532,18)	(379,64)	(634,62)	(398,6)	(302,27)	(437,19)	(376,44)	(556,31)
Precipitation	0,000002	0	0,000006	0,000002	0,000198	0,000001	0,000003	0,000015	0,000053	0,000049
(kg/m2/s)	(0,000006)	(0,000003)	(0,00001)	(0,000007)	(0,000083)	(0,000004)	(0,000008)	(0,000022)	(0,000041)	(0,000036)
Downward Short	165,16	139,95	223,18	321,88	84,15	242,11	330,11	87,43	254,04	108,36
Wave Radiation	(56,69)	(39,6)	(87,17)	(52,27)	(71,89)	(60,37)	(41,43)	(48,73)	(67,57)	(70,7)
u wind component	2,35	-0,35	4,38	0,3 (2,38)	3,13	-0,52	-1,45	2,95	-0,56	5,92 (2,1)
(m/s)	(2,52)	(1,55)	(2,69)		(3 <i>,</i> 53)	(1,95)	(2,02)	(2,03)	(2,27)	
v wind component	-2,11	-0,28	-3,55	-3,37	2,47	-0,47	-1,57	0,84	0,44	0,9 (1,54)
(m/s)	(1,31)	(0,87)	(1,74)	(1,36)	(2,13)	(1,24)	(1,12)	(0,98)	(1,72)	
V wind (m/s)	4,05	1,51	6,33	4,2 (1,13)	5,1 (2,63)	2,07	2,87	3,44	2,54	6,25 (1,9)
	(1,28)	(1,03)	(1,45)			(1,23)	(1,29)	(1,63)	(1,46)	
Atmospheric	676,79	273,17	1102,67	1045,86	741,89	603,55	1042,03	437,91	822	844,7
Boundary Layer	(154,07)	(127,62)	(186,17)	(153,98)	(294,46)	(168,91)	(145,67)	(154,8)	(189,44)	(216,8)
Thickness (m)										

Table 4.8.3: Summary of the 10 clusters

In addition to the previous Table 4.8.3, Figure 4.8.4 presents the mean normalized (z-score) variables of each cluster, respectively showing the differences of the parameters per cluster.

Figure 4.8.4: Normalized variables (z-score) averaged for each cluster

D3.3: Report on AQ and GHGs concentration at the ground level in the						
WP3 Integrated atmospheric modelling for connecting pressures to	Security:	Public				
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 189/269				

Daily, 10-meter from ground level, wind data were used to create the wind roses per each cluster as they are shown in Figures 4.8.5-4.8.14. Each wind direction distribution per cluster is presented in more details in Table 4.8.4.

Figure 4.8.5: Wind Rose - Cluster 1

Figure 4.8.6: Wind Rose - Cluster 2

Figure 4.8.7: Wind Rose - Cluster 3

Figure 4.8.8: Wind Rose - Cluster 4

Figure 4.8.10: Wind Rose - Cluster 6

	D3.3: Report on AQ and GHGs concentration at the ground level in the							
0	WP3 Integrated atmospheric modelling for connecting pressures to	Security:	Public					
ICARUS	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 192/269					

Figure 4.8.12: Wind Rose - Cluster 8

	D3.3: Report on AQ and GHGs concentration at the ground level in the							
0	WP3 Integrated atmospheric modelling for connecting pressures to	Security:	Public					
ICARUS	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 193/269					

Figure 4.8.13: Wind Rose - Cluster 9

Figure 4.8.14: Wind Rose - Cluster 10

	D3.3: Report on AQ and GHGs concentration at the ground level in the	ICARUS cities	
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 194/269

Table 4.8.4: 16 Wind Direction dis	istribution p	per cluster
------------------------------------	---------------	-------------

			Wind16								Total								
			S	SSW	SW	WSW	W	WNW	NW	NNW	Ν	NNE	NE	ENE	E	ESE	SE	SSE	
Cluster10	1	Count	0	0	0	8	250	453	319	201	167	126	65	14	1	0	0	0	1604
		% within Cluster10	0.0%	0.0%	0.0%	0.5%	15.6%	28.2%	19.9%	12.5%	10.4%	7.9%	4.1%	0.9%	0.1%	0.0%	0.0%	0.0%	100.0%
	2	Count	41	51	105	223	209	109	88	82	80	105	194	491	364	165	66	63	2436
		% within Cluster10	1.7%	2.1%	4.3%	9.2%	8.6%	4.5%	3.6%	3.4%	3.3%	4.3%	8.0%	20.2%	14.9%	6.8%	2.7%	2.6%	100.0%
	3	Count	0	0	0	0	118	413	313	176	84	39	7	0	0	0	0	0	1150
		% within Cluster10	0.0%	0.0%	0.0%	0.0%	10.3%	35.9%	27.2%	15.3%	7.3%	3.4%	0.6%	0.0%	0.0%	0.0%	0.0%	0.0%	100.0%
	4	Count	0	0	0	7	118	190	367	483	550	684	279	11	0	0	0	0	2689
		% within Cluster10	0.0%	0.0%	0.0%	0.3%	4.4%	7.1%	13.6%	18.0%	20.5%	25.4%	10.4%	0.4%	0.0%	0.0%	0.0%	0.0%	100.0%
	5	Count	25	42	121	142	36	5	8	1	2	5	10	10	17	14	17	21	476
		% within Cluster10	5.3%	8.8%	25.4%	29.8%	7.6%	1.1%	1.7%	0.2%	0.4%	1.1%	2.1%	2.1%	3.6%	2.9%	3.6%	4.4%	100.0%
	6	Count	51	42	77	169	264	114	96	92	119	141	337	492	197	125	138	67	2521
		% within Cluster10	2.0%	1.7%	3.1%	6.7%	10.5%	4.5%	3.8%	3.6%	4.7%	5.6%	13.4%	19.5%	7.8%	5.0%	5.5%	2.7%	100.0%
	7	Count	10	6	17	60	184	137	126	99	173	345	1056	758	108	43	28	13	3163
		% within Cluster10	0.3%	0.2%	0.5%	1.9%	5.8%	4.3%	4.0%	3.1%	5.5%	10.9%	33.4%	24.0%	3.4%	1.4%	0.9%	0.4%	100.0%
	8	Count	16	69	173	710	497	71	20	14	8	3	12	16	24	35	18	19	1705
		% within Cluster10	0.9%	4.0%	10.1%	41.6%	29.1%	4.2%	1.2%	0.8%	0.5%	0.2%	0.7%	0.9%	1.4%	2.1%	1.1%	1.1%	100.0%
	9	Count	45	65	78	71	55	38	16	15	23	31	68	162	125	101	107	63	1063
		% within Cluster10	4.2%	6.1%	7.3%	6.7%	5.2%	3.6%	1.5%	1.4%	2.2%	2.9%	6.4%	15.2%	11.8%	9.5%	10.1%	5.9%	100.0%
	10	Count	1	5	62	547	690	102	22	6	8	4	6	0	1	0	0	1	1455
		% within Cluster10	0.1%	0.3%	4.3%	37.6%	47.4%	7.0%	1.5%	0.4%	0.5%	0.3%	0.4%	0.0%	0.1%	0.0%	0.0%	0.1%	100.0%
Total		Count	189	280	633	1937	2421	1632	1375	1169	1214	1483	2034	1954	837	483	374	247	18262
		% within Cluster10	1.0%	1.5%	3.5%	10.6%	13.3%	8.9%	7.5%	6.4%	6.6%	8.1%	11.1%	10.7%	4.6%	2.6%	2.0%	1.4%	100.0%

0	D3.3: Report on AQ and GHGs concentration at the gr	ound level in the	ICARUS cities
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 195/269

Clusters and local Heat Waves

In Figures 4.8.15 and 4.8.16 are presented the heat waves occurrence per 5-year period and per cluster. The 5-year period 2046-2050 shows the highest number of heat waves. The most heat waves were associated with clusters 7 and 9 which correspond to clusters with days belong to warm period (see Table 4.8.2).

Figure 4.8.15: Heat Waves per 5-year period

Figure 4.8.16: Heat Waves per cluster

Clusters versus Air Quality level

As it can be seen in Table 4.1 two observation stations have been used for the present analysis. The descriptive statistics for NO₂, O_3 and PM₁₀ is given in Table 4.7.5.

Table 4.8.5: Air pollutants descriptive statistics									
		NO2	03	PM10					
Mean		48.1539	41.0876	28.0222					
Std. Deviatio	n	18.85761	20.84879	14.96106					
Minimum		8.50	1.33	5.36					
Maximum		124.67	102.54	156.00					
Percentiles	5	21.8861	8.2397	10.4342					
	25	34.3349	23.4889	16.5684					
	50	45.4264	42.0620	24.9680					
	75	59.5620	56.7980	35.9044					
	95	84.2917	74.7101	56.1959					

3	D3.3: Report on AQ and GHGs concentration at the gr	ound level in the	e ICARUS cities
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 196/269

Table 4.8.6 presents the pollutants' concentrations per cluster. Higher mean NO_2 concentrations are observed in clusters 1,2 and 8. Higher mean O_3 concentrations are observed in clusters 4 and 7. Higher mean PM_{10} concentrations are observed in clusters 4,7 and 9.

	Cluster									
	1	2	3	4	5	6	7	8	9	10
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
PM10 (μg/m3)	26,31 (14,12)	26,25 (17,44)	27,34 (13,76)	30,23 (14,2)	27,9 (14,11)	25,79 (14,09)	31,35 (14,2)	25,98 (14,83)	30,23 (14,64)	27,14 (15,56)
Ο3 (μg/m3)	28,65 (17,39)	25,46 (15,25)	39,18 (18,38)	56,46 (13,84)	26,74 (16,95)	43,48 (16,55)	59,67 (12,42)	23,42 (13,81)	54,41 (17,77)	29,5 (17,45)
NO2 (µg/m3)	54,18 (19,83)	55,24 (20,04)	49, <mark>4</mark> (17,27)	42,52 (15,48)	53,94 (19,47)	46, <mark>25</mark> (18,86)	39,79 (14,55)	54,99 (18,82)	40,47 (14,76)	53,74 (20,37)

Table 4.8.6: Summary pollutant concentrations per cluster

The differences in concentrations per cluster are shown in Figures 4.8.17-4.2.19.

*Figure 4.8.17: NO*² *concentration statistics per cluster*

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities

WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 197/269

Figure 4.8.19: PM₁₀ concentration statistics per cluster

Representative Days

In the following Table 4.8.7 are presented the selected RDs per 5-year period and per cluster.

						,		,						
Closest days 5year per clus	to centroids ter	per	clusters	Justers										
-,	oyear per claster			2	3	4	5	6	7	8	9	10		
5 year period	2001-2005	1	2005/10/27	2005/12/07	2004/05/05	2003/05/28	2001/10/19	2001/09/25	2005/08/30	2003/11/22	2004/08/23	2002/11/30		
	2006-2010	2	2009/02/25	2008/11/28	2009/03/10	2007/09/05	2007/11/23	2009/04/27	2008/07/09	2006/01/07	2006/06/15	2006/11/20		
	2011-2015	3	2012/03/25	2011/01/28	2013/09/29	2011/06/09	2013/10/06	2011/04/14	2013/06/25	2014/11/08	2015/06/29	2015/03/23		
	2016-2020	4	2016/11/07	2017/11/21	2017/03/02	2019/05/25	2018/06/19	2019/04/22	2018/06/21	2019/11/05	2018/07/28	2020/01/17		
	2021-2025	5	2025/02/18	2021/11/12	2025/04/14	2025/05/24	2024/11/19	2023/03/28	2021/06/18	2022/02/26	2024/06/08	2021/01/26		
	2026-2030	6	2028/11/06	2029/11/06	2029/03/17	2027/09/11	2030/12/17	2026/10/06	2026/08/08	2029/01/13	2030/06/18	2029/12/29		
	2031-2035	7	2035/03/02	2031/02/16	2033/03/22	2034/08/31	2032/12/06	2033/10/09	2033/06/14	2035/12/15	2032/04/27	2035/03/17		
	2036-2040	8	2037/11/06	2040/11/19	2036/02/28	2040/06/05	2038/12/02	2037/04/15	2039/06/04	2040/01/29	2040/09/03	2036/05/09		
	2041-2045	9	2042/03/19	2041/01/29	2044/10/21	2044/05/23	2041/02/12	2041/10/03	2045/06/05	2041/11/19	2045/08/25	2045/03/27		
	2046-2050	10	2048/10/26	2048/01/19	2046/03/24	2050/09/02	2046/03/18	2050/03/22	2046/08/11	2048/01/29	2046/06/30	2046/01/23		

Table 4.8.7: Representative days per cluster and 5year period

Selected Clusters and RDs for modeling purposes

Selected RDs will be used to perform targeted weather and air quality simulations within each selected 5-year period estimating hourly/daily concentrations of the priority pollutants to assess the climatic effect on air quality evolution and the characteristics of air quality future episodes. The selection was based on 3-year periods (2016-2020, 2021-2025 and 2031-2035) and on the clusters with the most elevated concentrations of PM₁₀, NO₂ and O₃. In the case of Madrid, cluster 8 recorded the most elevated values of NO₂, cluster 7 for the case of O₃ and PM₁₀. In Table 4.8.8 are presented the selected days which was used for modeling purposes.

Table 4.8.8	RDs for	modeling	purposes
-------------	---------	----------	----------

Period	Cluster 7 (O3, PM)	Cluster 8 (NO2)
2016-2020	2018-06-21	2019-11-05
2021-2025	2021-06-18	2022-02-26
2031-2035	2033-06-14	2035-12-15

4.8.3 Air Quality Modeling results

4.8.3.1 Overall results

In Figure 4.8.20 the daily average concentrations of NO_2 , O_3 , PM_{10} and $PM_{2.5}$ for selected RDs are presented.

Figure 4.8.20: Daily average concentrations

In Figure 4.8.21 the obtained daily averaged concentrations are compared based on USTUTT and EGDAR HTAP emission inventories respectively. The results seem not to differ significantly expect in some days in PM concentrations.

Figure 4.8.21: Daily average concentrations - USTUTT vs EDGAR HTAP comparison

4.8.3.2 Clusters results

NO₂ Concentrations (Cluster 8)

In Figure 4.8.22, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.8.23.

The daily maximum concentrations exceed the EU and WHO yearly limit of 40µg/m³.

O₃ Concentrations (Cluster 7)

In Figure 4.8.24, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.8.25.

The daily average concentrations show an increasing trend with maximum values very close to the WHO 8hr limit of $100 \mu g/m^3$. The maximum hourly concentrations exceed this limit.

PM₁₀ Concentrations (Cluster 7)

In Figure 4.8.26, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.8.27.

The daily maximum concentrations show maximum values below the WHO yearly limit of 20µg/m³.

-	D3.3: Report on AQ and GHGs concentration at the	ground level in th	ne ICARUS cities
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 201/269

NO₂-Cluster 8

Figure 4.8.22: NO₂ Day concentrations

Figure 4.8.23: NO2 Hourly concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities					
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public			
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 202/269			

O₃-Cluster 7

Figure 4.8.24: O₃ Daily concentrations

Figure 4.8.25: O₃ Hourly concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities					
٢	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public			
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 203/269			

PM₁₀-Cluster 7

Figure 4.8.27: PM₁₀ Hourly concentrations

PM_{2.5}Concentrations (Cluster 7)

In Figure 4.8.28, the results are presented in terms of concentrations average, daily maximum and hourly maximum.

The daily maximum concentrations are below the WHO yearly limit of $10\mu g/m^3$ in two days and below the WHO daily limit of $25\mu g/m^3$ in all days.

Figure 4.8.28: PM_{2.5} Day concentrations

Figure 4.8.29 presents the estimated BaP daily concentrations contained in PM_{2.5}. All days are above WHO annual limit of 0.12ng/m³ however the average values are below the EU annual limit of 1ng/m³.

Figure 4.8.29: BaP daily concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the				
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public		
	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 205/269		

4.8.3.3 The Emission Inventory effect

Figures 4.8.30, 4.8.31, 4.8.32 and 4.8.33 illustrate the emission inventory temporal change effect on NO₂, O₃, PM₁₀ and PM_{2.5} concentration levels respectively. There is a decreasing trend in NO₂ and PM₁₀ concentrations. O₃ and PM_{2.5} concentrations seem to be stable; a quality check of the emission inventory could clarify more the outcome.

Figure 4.8.30: NO₂ emission inventory comparison

Figure 4.8.31: O₃ emission inventory comparison

D3.3: Report on AQ and GHGs concentration	n at the ground I	evel in the
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 206/269

Figure 4.8.32: PM₁₀ emission inventory comparison

Figure 4.8.33: PM_{2.5} emission inventory comparison

	D3.3: Report on AQ and GHGs concentration at the ground level in	n the ICARUS citi	es
9	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 207/269

4.8.4 The GHGs Modeling result

Figure 4.8.34: (a),(b) CO₂ and CH₄ Daily average concentrations . (c),(d) CO₂ and CH₄ concentrations of the most polluted day

D3.3: Report on AQ and GHGs concentration at the ground level in the				
WP3 Integrated atmospheric modelling for connecting pressures to	Security:	Public		
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 208/269		

4.8.5 Conclusions

For Madrid greater area, clusters 1,2,8 and 5 could be categorized in cold period and on the other hand clusters 4,7 and 9 in warm period.

In clusters 1,8 and 9 there is a linear increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 3,4,5 and 10 show a linear decrease in frequency occurrence.

The 5-year period 2046-2050 shows the highest number of heat waves. The most heat waves were associated with clusters 7 and 9 which correspond to clusters with days belong to warm period.

Cluster 8 is characterized with elevated NO_2 and cluster 7 with elevated O_3 and PM concentrations.

 NO_2 daily maximum concentrations exceed the EU and WHO yearly limit of $40\mu g/m^3$.

 O_3 daily average concentrations show an increasing trend with maximum values very close to the WHO 8hr limit of $100\mu g/m^3$. The maximum hourly concentrations exceed this limit.

 PM_{10} daily maximum concentrations show maximum values below the WHO yearly limit of $20 \mu g/m^3.$

 $PM_{2.5}$ daily maximum concentrations are below the WHO yearly limit of $10\mu g/m^3$ in two days and below the WHO daily limit of $25\mu g/m^3$ in all days.

For BaP concentrations, all days are above WHO annual limit of 0.12ng/m³ however the average values are below the EU annual limit of 1ng/m³.

Regarding the emission reductions intervention effect, there is a decreasing trend in NO_2 and PM_{10} concentrations. O_3 and $PM_{2.5}$ concentrations seem to be stable; a quality check of the emission inventory could clarify more the outcome.

4.9 Copenhagen – Roskilde

4.9.1 PCA results

The PCA analysis applied to the Copenhagen - Roskilde data has led to the following results.

Three (3) principal components have been identified as factors for the cluster analysis (Table 4.9.1). Principal Components (PC) explaining 66.66% of the total variance in the initial data.

Factor 1 explains 32.91% of the total variance and contains the 2 temperature variables, mean, daily temperature range, the down ward short-wave radiation and a negative sign of RH.

Factor 2 explains 19.34% of the total variance and contains the atmospheric boundary layer thickness and the U wind component.

Factor 3 explains 14.41% of the total variance and contains precipitation, V wind component and a negative sign of surface pressure.

	Compo	onent	
	1	2	3
Downward short-wave surface radiation	.872		
Temperature	.841		
Temperature Range	.778		
RH	571		
Atmospheric boundary layer thickness		.920	
U wind		.668	
Precipitation			.776
V wind			.665
Surface pressure			574

Table 4.9.1: The Principal Components results

4.9.2 Clustering results

Cluster description and trends

As explained in 3.4.4 the selected clusters of the Copenhagen -Roskilde are 8. In Figure 4.9.1 are shown the number of days per cluster, where clusters 4 and 7 have the most days and cluster 2 and 8 have the less. The monthly distribution per cluster is presented in Table 4.9.2 and in Figure 4.9.2. By dividing the year in two periods, cold and warm, clusters 1,3,5 and 7 could be categorized in cold period and on the other hand clusters 4 and 6 in warm period.

Figure 4.9.1: Number of Days per cluster

		Month							Total					
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Cluster	1	256	269	369	232	46	7	0	4	95	330	240	230	2078
	2	97	61	79	76	99	106	79	134	144	162	139	155	1331
	3	415	417	486	188	39	5	1	1	47	165	239	294	2297
	4	0	0	29	203	598	898	983	815	321	52	0	1	3900
	5	261	175	141	134	78	35	25	52	202	358	384	361	2206
	6	0	4	21	217	394	340	416	411	374	66	2	1	2246
	7	455	417	333	279	198	63	15	41	117	253	379	443	2993
	8	66	69	92	171	98	46	31	92	200	164	117	65	1211
Total		1550	1412	1550	1500	1550	1500	1550	1550	1500	1550	1500	1550	18262

Table 4.9.2: Monthly distribution per cluster

	D3.3: Report on AQ and GHGs concentration at the ground level in the				
9	WP3 Integrated atmospheric modelling for connecting pressures to	Security:	Public		
ICARUS	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 211/269		

Figure 4.9.2: Visualized bar chart of monthly distribution per cluster

A trend analysis of the 5-year frequency of each cluster (Figure 4.9.3). There is an evidence that in clusters 2 and 5 there is a linear increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 3 and 8 show a linear decrease in frequency occurrence. In the rest clusters no clear trends could be pointed out.

D3.3: Report on AQ and GHGs concentration at the ground level in the				
WP3 Integrated atmospheric modelling for connecting pressures to	Security:	Public		
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 212/269		

Figure 4.9.3: Cluster 1-8 frequency trends

Cluster characterization

The clusters' implementation is based on the mean values of weather parameters which are displayed in Table 4.9.3.

	Cluster							
	1	2	3	4	5	6	7	8
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
Temperature (°C)	2,76	10 (5,94)	1,39	16,61	7,62	13,63	5,08	7,98
	(4,97)		(4,84)	(4,77)	(3,84)	(5,07)	(4,73)	(5,13)
Daily Temperature	3,09	3,77	3,14	6,06	2,64	5,14	2,81 (1,3)	3,33 (1,2)
Range (°C)	(1,32)	(1,53)	(1,46)	(1,34)	(1,16)	(1,17)		
Relative Humidity	79,8	88,04	89,27	80,5	82,71	74,64	90,31	71,35
(%)	(6,82)	(4,71)	(5,66)	(6,24)	(4,45)	(5,75)	(4,58)	(6,14)
Surface Pressure	100950,0	99490,95	101676,7	101317,2	99464,8	101078,5	100086,5	100271,0
(Pa)	1	(1005,75)	9	1 (798,04)	(996,22)	(812,9)	4	8 (941,21)
	(1127,47)		(1178,65)				(1062,76)	
Precipitation	0,000008	0,000137	0,000008	0,00001	0,000042	0,000008	0,000038	0,000012
(kg/m2/s)	(0,000012	(0,000082	(0,000012	(0,000021	(0,000033	(0,000015	(0,000033	(0,000016
))))))))
Downward Short	91,67	87,12	69,24	274,2	67,84	255,17	58,58	158,39
Wave Radiation	(64,54)	(83,29)	(53,26)	(63,23)	(64,85)	(70,88)	(54,69)	(93,7)
u wind component	1,62	0,18 (4,4)	-1,24	-1,94	6,71 (3,2)	1,49	-0,04	7,01
(m/s)	(4,94)		(4,09)	(3,07)		(4,06)	(4,39)	(3,84)
v wind component	-2,9	4,33	-0,84	0,73 (2,5)	3,38	-1,43	2,62	-3,41
(m/s)	(3,62)	(3,79)	(3,12)		(3,38)	(3,07)	(3,35)	(3,44)

Table	4.9.3:	Summarv	of the	8	clusters
10010		Sannary	oj une	0	crusters

D3.3: Report on AQ and GHGs concentration at the ground level in the				
WP3 Integrated atmospheric modelling for connecting pressures to	Security:	Public		
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 213/269		

V wind (m/s)	6,49	6,67	4,79 (2,4)	3,9 (2,17)	8,51 (2,4)	5,12	5,54 (2,6)	8,98
	(2,53)	(2,82)				(1,99)		(2,59)
Atmospheric	553,22	477,89	329,51	288,51	707,62	548,32	392,39	915,9
Boundary Layer	(126,07)	(154,14)	(109,38)	(97,05)	(133,2)	(142,54)	(119,96)	(162,24)
Thickness (m)								

In addition to the previous Table 4.9.3, Figure 4.9.4 presents the mean normalized (z-score) variables of each cluster, respectively showing the differences of the parameters per cluster.

Figure 4.9.4: Normalized variables (z-score) averaged for each cluster

D3.3: Report on AQ and GHGs concentration at the ground level in the					
WP3 Integrated atmospheric modelling for connecting pressures to	Security:	Public			
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 214/269			

Daily, 10-meter from ground level, wind data were used to create the wind roses per each cluster as they are shown in Figures 4.9.5-4.9.12. Each wind direction distribution per cluster is presented in more details in Table 4.9.4.

Figure 4.9.5: Wind Rose - Cluster 1

Figure 4.9.6: Wind Rose - Cluster 2

Figure 4.9.7: Wind Rose - Cluster 3

Figure 4.9.8: Wind Rose - Cluster 4

-	D3.3: Report on AQ and GHGs concentration at the ground level in the				
0	WP3 Integrated atmospheric modelling for connecting pressures to	Security:	Public		
ICARUS	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 216/269		

Figure 4.9.9: Wind Rose - Cluster 5

Figure 4.9.10: Wind Rose - Cluster 6

Figure 4.9.11: Wind Rose - Cluster 7

Figure 4.9.12: Wind Rose - Cluster 8

	D3.3: Report on AQ and GHGs concentration at th	ne ground level in the	e ICARUS cities
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 218/269

Table 4.9.4: 16 Wind Direction distribution per cluster

			Wind16	5															Total
			S	SSW	SW	WSW	W	WNW	NW	NNW	N	NNE	NE	ENE	E	ESE	SE	SSE	
Cluster8	1	Count	5	16	38	106	231	311	267	262	254	196	136	79	59	63	39	16	2078
		% within Cluster8	0.2%	0.8%	1.8%	5.1%	11.1%	15.0%	12.8%	12.6%	12.2%	9.4%	6.5%	3.8%	2.8%	3.0%	1.9%	0.8%	100.0%
	2	Count	190	263	188	80	25	17	18	13	15	17	20	30	57	82	131	185	1331
		% within Cluster8	14.3%	19.8%	14.1%	6.0%	1.9%	1.3%	1.4%	1.0%	1.1%	1.3%	1.5%	2.3%	4.3%	6.2%	9.8%	13.9%	100.0%
	3	Count	66	66	62	111	123	145	151	147	156	196	208	238	234	186	128	80	2297
		% within Cluster8	2.9%	2.9%	2.7%	4.8%	5.4%	6.3%	6.6%	6.4%	6.8%	8.5%	9.1%	10.4%	10.2%	8.1%	5.6%	3.5%	100.0%
	4	Count	248	192	122	102	77	85	141	207	245	150	142	208	610	626	454	291	3900
		% within Cluster8	6.4%	4.9%	3.1%	2.6%	2.0%	2.2%	3.6%	5.3%	6.3%	3.8%	3.6%	5.3%	15.6%	16.1%	11.6%	7.5%	100.0%
	5	Count	56	188	569	762	416	134	23	10	10	3	1	0	3	7	14	10	2206
		% within Cluster8	2.5%	8.5%	25.8%	34.5%	18.9%	6.1%	1.0%	0.5%	0.5%	0.1%	0.0%	0.0%	0.1%	0.3%	0.6%	0.5%	100.0%
	6	Count	40	55	104	183	240	334	343	253	162	77	87	143	130	53	19	23	2246
		% within Cluster8	1.8%	2.4%	4.6%	8.1%	10.7%	14.9%	15.3%	11.3%	7.2%	3.4%	3.9%	6.4%	5.8%	2.4%	0.8%	1.0%	100.0%
	7	Count	295	366	384	289	195	99	63	57	44	49	68	98	168	236	295	287	2993
		% within Cluster8	9.9%	12.2%	12.8%	9.7%	6.5%	3.3%	2.1%	1.9%	1.5%	1.6%	2.3%	3.3%	5.6%	7.9%	9.9%	9.6%	100.0%
	8	Count	0	0	9	65	280	395	232	146	47	19	11	3	1	2	0	1	1211
		% within Cluster8	0.0%	0.0%	0.7%	5.4%	23.1%	32.6%	19.2%	12.1%	3.9%	1.6%	0.9%	0.2%	0.1%	0.2%	0.0%	0.1%	100.0%
Total		Count	900	1146	1476	1698	1587	1520	1238	1095	933	707	673	799	1262	1255	1080	893	18262
		% within Cluster8	4.9%	6.3%	8.1%	9.3%	8.7%	8.3%	6.8%	6.0%	5.1%	3.9%	3.7%	4.4%	6.9%	6.9%	5.9%	4.9%	100.0%

	D3.3: Report on AQ and GHGs concentration	n at the ground I	evel in the
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 219/269

Clusters and local Heat Waves

In Figures 4.9.13 and 4.9.14 are presented the heat waves occurrence per 5-year period and per cluster. The most heat waves seem to occur after 2021 and are spread through 2050. The 5-year period 2041-2045 shows the highest number of heat waves, while the next 5-year period shows a decrease. The most heat waves were associated with cluster 4 which correspond to clusters with days belong to warm period (see Table 4.9.2).

Figure 4.9.13: Heat Waves per 5-year period

Figure 4.9.14: Heat Waves per cluster

Clusters versus Air Quality level

As it can be seen in Table 4.1 three observation stations have been used for the present analysis. The descriptive statistics for NO_2 , O_3 and PM_{10} is given in Table 4.9.5.

Table 4.9.5. All pollutants descriptive statistics						
		NO2	03	PM10		
Mean		38.9441	39.5671	29.6071		
Std. Deviation		13.41391	16.96380	13.15144		
Minimum		6.88	1.21	3.51		
Maximum		112.33	103.63	216.00		
Percentiles	5	18.4611	11.6394	14.3003		
	25	29.3075	26.9553	20.8500		
	50	38.0780	39.6980	27.2590		
	75	47.4075	51.6553	35.3120		
	95	62.5037	67.1509	54.1510		

Table 4.9.6 presents the pollutants' concentrations per cluster. Higher mean NO_2 concentrations are observed in clusters 1 and 7. Higher mean O_3 concentrations are observed in clusters 4 and 6. Higher mean PM_{10} concentrations are observed in clusters 1,3 and 7.

	Cluster							
	1	2	3	4	5	6	7	8
	Mean							
	(SD)							
PM10 (μg/m3)	31,91	28,04	31,94	27,95	28,38	28,33	31,73	27,35
	(15,16)	(12,36)	(14,56)	(9,61)	(13,31)	(11,79)	(15,19)	(12,27)
O3 (μg/m3)	34,75	37,86	34,97	48,78	32,84	46,52	35	39,19
	(16,47)	(18,18)	(16,86)	(13,26)	(15,85)	(14,31)	(17,59)	(15,21)
NO2 (μg/m3)	41,03	38,31	38,61	37,84	38,51	38,12	40,47	38,85
	(14)	(13,3)	(12,9)	(13,38)	(12,82)	(14,24)	(13,18)	(13,18)

Table 4.9.6: Summary pollutant concentrations per cluster

The differences in concentrations per cluster are shown in Figures 4.9.15-4.2.17.

Figure 4.9.15: NO₂ concentration statistics per cluster

*Figure 4.9.17: PM*₁₀ *concentration statistics per cluster*

2021-2025

2031-2035

D3.3: Report on AQ and GHGs concentration	n at the ground I	evel in the
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 222/269

Representative Days

In the following Table 4.9.7 are presented the selected RDs per 5-year period and per cluster.

Closest	days to cent	roids	clusters							
per 5yea	r per cluster		1	2	3	4	5	6	7	8
5 year	2001-2005	1	2002/04/11	2003/10/19	2005/03/25	2004/06/03	2004/12/01	2004/06/13	2005/04/27	2001/04/21
period	2006-2010	2	2006/11/08	2010/11/18	2009/03/12	2006/05/29	2010/04/10	2010/06/11	2006/04/21	2007/09/25
	2011-2015	3	2015/03/15	2011/05/06	2014/10/31	2015/07/07	2011/10/04	2013/06/17	2013/01/15	2014/04/18
	2016-2020	4	2018/02/21	2016/01/09	2017/03/01	2017/08/07	2018/11/20	2018/08/24	2020/02/17	2018/09/30
	2021-2025	5	2022/03/28	2023/09/30	2025/02/09	2024/07/17	2023/02/25	2023/08/30	2022/11/20	2023/05/11
	2026-2030	6	2028/02/22	2030/10/22	2028/12/05	2030/06/02	2029/12/04	2027/07/30	2026/11/21	2027/04/22
	2031-2035	7	2031/12/08	2032/11/06	2031/01/03	2035/06/10	2032/11/02	2032/06/07	2035/03/02	2031/04/15
	2036-2040	8	2040/03/12	2040/11/11	2036/03/22	2039/06/13	2037/01/17	2036/06/11	2039/05/18	2038/04/01
	2041-2045	9	2041/03/05	2045/10/02	2041/02/18	2044/08/12	2041/11/02	2043/05/09	2045/03/02	2043/04/09
	2046-2050	10	2048/03/29	2047/05/17	2048/11/11	2050/05/22	2050/12/08	2046/08/02	2047/10/20	2048/08/01

Table 107. r	Januarantativa		, alwatan and	Fue and in a stand
10012 4.9.7.1	<i>Representative</i>	aavs per	Ciuster ana	Svear perioa
			0.0.0000.00	<i>c</i> ,

Selected Clusters and RDs for modeling purposes

2031-12-08

Selected RDs will be used to perform targeted weather and air quality simulations within each selected 5-year period estimating hourly/daily concentrations of the priority pollutants to assess the climatic effect on air quality evolution and the characteristics of air quality future episodes. The selection was based on 3-year periods (2016-2020, 2021-2025 and 2031-2035) and on the clusters with the most elevated concentrations of PM₁₀, NO₂ and O₃. In the case of Copenhagen/Roskilde, cluster 1 recorded the most elevated values of NO₂, cluster 4 for the case of O₃ and cluster 3 for the case of PM₁₀. In Table 4.9.8 are presented the selected days which was used for modeling purposes.

Table 4.9.8: RDs for modeling purposes				
Period	Cluster 1 (NO2)	Cluster 3 (PM)	Cluster 4 (O3)	
2016-2020	2018-02-21	2017-03-01	2017-08-07	

Tahle	498.	RDs	for	modelina	nurnoses
iubic	4.5.0.	NDS	jui	mouching	purposes

2018-02-21	2017-03-01	2017-08-07
2022-03-28	2025-02-09	2024-07-17

2031-01-03

2035-06-10

4.9.3 Air Quality Modeling results – Roskilde wider area

4.9.3.1 Overall results

In Figure 4.9.18 the daily average concentrations of NO₂, O₃, PM_{10} and $PM_{2.5}$ for selected RDs are presented.

Figure 4.9.18: Daily average concentrations

In Figure 4.9.19 the obtained daily averaged concentrations are compared based on USTUTT and EGDAR HTAP emission inventories respectively. The results seem not to differ significantly.

Figure 4.9.19: Daily average concentrations - USTUTT vs EDGAR HTAP comparison

D3.3: Report on AQ and GHGs concentration at the ground level in the			
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public	
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 224/269	

4.9.3.2 Clusters results

NO₂ Concentrations (Cluster 1)

In Figure 4.9.20, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.9.21.

The daily maximum concentrations seem to be very close or exceed the EU and WHO yearly limit of $40\mu g/m^3$.

O₃ Concentrations (Cluster 4)

In Figure 4.9.22, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.9.23.

Both daily average and maximum concentrations are below the WHO 8hr limit of $100 \mu g/m^3$.

PM₁₀ Concentrations (Cluster 3)

In Figure 4.9.24, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.9.25.

The picture is mixed. The daily maximum concentrations are below the WHO yearly limit of $20\mu g/m^3$ in two days. In one day, the daily maximum value exceeds the WHO daily limit of $50\mu g/m^3$.

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICAF			
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public	
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 225/269	

NO₂-Cluster 1

Figure 4.9.20: NO₂ Day concentrations

Figure 4.9.21: Hourly NO₂ concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the IC				
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public		
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 226/269		

O₃-Cluster 4

Figure 4.9.22: O₃ Daily concentrations

Figure 4.9.23: O₃ Hourly concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the IC			
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the	Security:	Public	
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 227/269	

PM₁₀-Cluster 3

Figure 4.9.25: PM₁₀ Hourly concentrations

PM_{2.5} Concentrations (Cluster 3)

In Figure 4.9.29, the results are presented in terms of concentrations average, daily maximum and hourly maximum.

The picture about the $PM_{2.5}$ concentration is mixed. The daily maximum concentration is well above the WHO yearly limit of $10\mu g/m^3$ in one day and on and below it the rest days.

Figure 4.9.26: PM_{2.5} Day concentrations

Figure 4.9.27 presents the estimated BaP daily concentrations contained in $PM_{2.5}$. All days are above WHO annual limit of $0.12 ng/m^3$ however two days are below the EU annual limit of $1 ng/m^3$.

Figure 4.9.27: BaP daily concentrations

4.9.3.3 The Emission Inventory effect

Figures 4.9.28, 4.9.29, 4.9.30 and 4.9.31 illustrate the emission inventory temporal change effect on NO₂, O₃, PM₁₀ and PM_{2.5} concentration levels respectively. There is a decreasing trend in NO₂, PM₁₀ and PM_{2.5} pollutants indicating the positive effect on emission reductions intervention. In the case of O₃, concentrations seem to be stable.

Figure 4.9.28: NO₂ emission inventory comparison

Figure 4.9.29: O3 emission inventory comparison

D3.3: Report on AQ and GHGs concentration at the ground level in the		
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 230/269

Figure 4.9.30: PM₁₀ emission inventory comparison

4.9.4 Air Quality Modeling results – Copenhagen wider area

4.9.4.1 Overall results

In Figure 4.9.32 the daily average concentrations of NO₂, O₃, PM_{10} and $PM_{2.5}$ for selected RDs are presented.

Figure 4.9.32: Daily average concentrations

D3.3: Report on AQ and GHGs concentration at the ground level in the		
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 232/269

4.9.4.2 Clusters results

NO₂ Concentrations (Cluster 1)

In Figure 4.9.33, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.9.34.

The daily maximum concentrations are below EU and WHO yearly limit of $40\mu g/m^3$. The hourly maximum concentrations are below the WHO hourly limit of $20 \mu g/m^3$.

O₃ Concentrations (Cluster 4)

In Figure 4.9.35, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.9.36.

Both daily average and maximum concentrations are below the WHO 8hr limit of $100\mu g/m^3$. The maximum hourly concentrations are below the EU limit of $120\mu g/m^3$.

PM₁₀ Concentrations (Cluster 3)

In Figure 4.9.37, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.9.38.

The picture is mixed. The daily maximum concentrations are below the WHO yearly limit of $20\mu g/m^3$ in two days. All daily maximum values are below the WHO daily limit of $50\mu g/m^3$.

	D3.3: Report on AQ and GHGs concentration at the ground level in the IC	CARUS cities	
9	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 233/269

NO₂-Cluster 1

Figure 4.9.33: NO₂ Day concentrations

Figure 4.9.34: Hourly NO₂ concentrations

-	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
٢	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 234/269

O₃-Cluster 4

Figure 4.9.35: O₃ Daily concentrations

Figure 4.9.36: O₃ Hourly concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the IC	CARUS cities	
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 235/269

PM₁₀-Cluster 3

Figure 4.9.37: PM₁₀ Daily concentrations

Figure 4.9.38: PM₁₀ Hourly concentrations

PM_{2.5} Concentrations (Cluster 3)

In Figure 4.9.39, the results are presented in terms of concentrations average, daily maximum and hourly maximum.

The picture about the $PM_{2.5}$ concentration is mixed. The daily maximum concentration is well above the WHO yearly limit of $10\mu g/m^3$ in one day. On the other hand its well below in another day.

Figure 4.9.39: PM_{2.5} Day concentrations

Figure 4.9.40 presents the estimated BaP daily concentrations contained in PM_{2.5}. All days are above WHO annual limit of 0.12ng/m³ however two days are below the EU annual limit of 1ng/m³.

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS		
9	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 237/269

4.9.4.3 The Emission Inventory effect

Figures 4.9.41, 4.9.42, 4.9.43 and 4.9.44 illustrate the emission inventory temporal change effect on NO₂, O₃, PM₁₀ and PM_{2.5} concentration levels respectively. There is a clearly decreasing trend in NO₂, PM₁₀ and PM_{2.5} pollutants indicating the positive effect on emission reductions intervention. In the case of O₃, concentrations seem to be stable.

Figure 4.9.41: NO₂ emission inventory comparison

Figure 4.9.42: O₃ emission inventory comparison

Figure 4.9.43: PM₁₀ emission inventory comparison

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS		
9	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 239/269

4.9.5 The GHGs Modeling results

Figure 4.9.45: (a),(b) CO₂ and CH₄ Daily average concentrations . (c),(d) CO₂ and CH₄ concentrations of the most polluted day

D3.3: Report on AQ and GHGs concentration	n at the ground I	evel in the
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 240/269

4.9.6 Conclusions

Copenhagen – Roskilde

For Copenhagen – Roskilde greater area, clusters 1,3,5 and 7 could be categorized in cold period and on the other hand clusters 4 and 6 in warm period.

In in clusters 2 and 5 there is a linear increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 3 and 8 show a linear decrease in frequency occurrence.

The most heat waves seem to occur after 2021 and are spread through 2050. The 5-year period 2041-2045 shows the highest number of heat waves, while the next 5-year period shows a decrease. The most heat waves were associated with cluster 4 which correspond to clusters with days belong to warm period

Cluster 1 is characterized with elevated NO_2 concentrations, cluster 4 with elevated O_3 concentrations and cluster 3 with elevated PM concentrations.

Copenhagen wider area

 NO_2 daily maximum concentrations seem to be very close or exceed the EU and WHO yearly limit of $40 \mu g/m^3.$

Both O_3 daily average and maximum concentrations are below the WHO 8hr limit of $100\mu g/m^3$.

For PM₁₀ the picture is mixed. The daily maximum concentrations are below the WHO yearly limit of $20\mu g/m^3$ in two days. In one day, the daily maximum value exceeds the WHO daily limit of $50\mu g/m^3$.

The picture about the $PM_{2.5}$ concentration is mixed. The daily maximum concentration is well above the WHO yearly limit of $10\mu g/m^3$ in one day and on and below it the rest days.

For BaP concentrations, all days are above WHO annual limit of 0.12ng/m³ however two days are below the EU annual limit of 1ng/m³.

There is a decreasing trend in NO₂, PM_{10} and $PM_{2.5}$ pollutants indicating the positive effect on emission reductions intervention. In the case of O₃, concentrations seem to be stable.

Roskilde wider area

 NO_2 daily maximum concentrations are below EU and WHO yearly limit of $40\mu g/m^3$. The hourly maximum concentrations are below the WHO hourly limit of $20 \ \mu g/m^3$.

Both O_3 daily average and maximum concentrations are below the WHO 8hr limit of $100\mu g/m^3$. The maximum hourly concentrations are below the EU limit of $120\mu g/m^3$.

For PM₁₀ the picture is mixed. The daily maximum concentrations are below the WHO yearly limit of $20\mu g/m^3$ in two days. All daily maximum values are below the WHO daily limit of $50\mu g/m^3$.

D3.3: Report on AQ and GHGs concentration	n at the ground I	evel in the		
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Vel in the Public Page 241/269		
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 241/269		

The picture about the $PM_{2.5}$ concentration is mixed. The daily maximum concentration is well above the WHO yearly limit of $10\mu g/m^3$ in one day. On the other hand, its well below in another day.

For BaP concentrations, all days are above WHO annual limit of 0.12 ng/m³ however two days are below the EU annual limit of 1 ng/m³

There is a clearly decreasing trend in NO_2 , PM_{10} and $PM_{2.5}$ pollutants indicating the positive effect on emission reductions intervention. In the case of O_3 , concentrations seem to be stable.

D3.3: Report on AQ and GHGs concentration at the ground level in the							
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	vel in the Public Page 242/269					
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 242/269					

4.10 Ljubljana

4.10.1 PCA results

The PCA analysis applied to Ljubljana data has led to the following results.

Four (4) principal components have been identified as factors for the cluster analysis (Table 4.10.1). Principal Components (PC) explaining 80.85% of the total variance in the initial data.

Factor 1 explains 31.58% of the total variance and contains the 2 temperature variables, mean, daily temperature range and the down ward short-wave radiation.

Factor 2 explains 18.70% of the total variance and contains precipitation and RH.

Factor 3 explains 15.70% of the total variance and contains U and V wind components.

Factor 4 explains 11.53% of the total variance and contains atmospheric boundary layer thickness and surface pressure.

	Component	I		
	1	2	3	4
Downward short-wave surface radiation	.860			
Temperature	.859			
Temperature Range	.754			
Precipitation		.826		
RH		.826		
U wind			.903	
V wind			.892	
Atmospheric boundary layer thickness				.838
Surface pressure				667

Table 4.10.1: The Principal Components results

4.10.2 Clustering results

Cluster description and trends

As explained in 3.4.4 the selected clusters of the city of Ljubljana are 6. In Figure 4.10.1 are shown the number of days per cluster, where cluster 3 have the most days and cluster 5 have the less. The monthly distribution per cluster is presented in Table 4.10.2 and in Figure 4.10.2. By dividing the year in two periods, cold and warm, clusters 2,5 and 6 could be categorized in cold period and on the other hand clusters 3 and 4 in warm period.

D3.3: Report on AQ and GHGs concentration	n at the ground l	evel in the
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 243/269

Figure 4.10.1: Number of Days per cluster

		Month	า											Total
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Cluster 6	1	161	218	470	506	350	119	72	24	129	180	162	123	2514
	2	560	470	360	163	17	0	0	0	79	379	485	597	3110
	3	0	0	49	403	718	929	1083	123 0	780	86	0	0	5278
	4	118	127	165	165	302	396	371	280	352	250	177	112	2815
	5	181	212	207	232	161	55	24	15	59	152	178	226	1702
	6	530	385	299	31	2	1	0	1	101	503	498	492	2843
Total		155	141	155	150	155	150	1550	155	150	155	150	155	1826
		0	2	0	0	0	0		0	0	0	0	0	2

Table 4.10.2: Monthly distribution per cluster

Figure 4.10.2: Visualized bar chart of monthly distribution per cluster

-	D3.3: Report on AQ and GHGs concentration	n at the ground I	evel in the
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 244/269

A trend analysis of the 5-year frequency of each cluster (Figure 4.9.3). There is an evidence that in clusters 2 and 5 there is a linear increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 3 and 8 show a linear decrease in frequency occurrence. In the rest clusters no clear trends could be pointed out.

Figure 4.10.3: Cluster 1-6 frequency trends

D3.3: Report on AQ and GHGs concentration	n at the ground I	evel in the	
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	vel in the Public Page 245/269	
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 245/269	

Cluster characterization

The clusters' implementation is based on the mean values of weather parameters which are displayed in Table 4.10.3.

	Cluster					
	1	2	3	4	5	6
	Mean (SD)					
Temperature (°C)	4,86 (6,35)	4,99 (4,53)	17,05 (4,9)	11,45 (7,11)	8,55 (4,25)	3,29 (5,65)
Daily Temperature Range (°C)	7,26 (2,05)	6,28 (2,14)	10,02 (1,66)	5,6 (1,85)	5,88 (2,07)	7,19 (2,29)
Relative Humidity (%)	55,07 (9,87)	74,15 (13,5)	69,63 (9,59)	86,25 (5,63)	77,79 (10,54)	73 (13,61)
Surface Pressure (Pa)	94530,57 (871,18)	94809,35 (801,68)	94941,36 (592,4)	94120,34 (715,03)	93716,59 (755,61)	95778,31 (795,39)
Precipitation (kg/m2/s)	0,000011 (0,000025)	0,000015 (0,000029)	0,000026 (0,000038)	0,000165 (0,000103)	0,000106 (0,000109)	0,000007 (0,000017)
Downward Short Wave Radiation	208,73 (87,54)	104,72 (56,78)	288,44 (49,61)	137,4 (79,73)	132,69 (87,43)	112,56 (50,2)
u wind component (m/s)	-0,95 (2,75)	3,18 (1,39)	-0,57 (2,06)	-1,72 (1,79)	3,7 (1,82)	-0,14 (2,08)
v wind component (m/s)	-2,68 (1,69)	1,55 (1,12)	-0,12 (1,1)	-0,54 (1,61)	3,33 (1,83)	0,01 (0,82)
V wind (m/s)	3,9 (1,8)	3,69 (1,44)	2,1 (1,18)	2,6 (1,51)	5,28 (1,87)	1,91 (1,18)
Atmospheric Boundary Layer Thickness (m)	887,84 (228,96)	487,29 (133,6)	615,53 (136,63)	455,07 (147,24)	812,2 (202,89)	309,34 (132,03)

Table 4.10.3: Summary of the 6 clusters

In addition to the previous Table 4.10.3, Figure 4.10.4 presents the mean normalized (z-score) variables of each cluster, respectively showing the differences of the parameters per cluster.

Figure 4.10.4: Normalized variables (z-score) averaged for each cluster

Daily, 10-meter from ground level, wind data were used to create the wind roses per each cluster as they are shown in Figures 4.10.5-4.10.14. Each wind direction distribution per cluster is presented in more details in Table 4.10.4.

Figure 4.10.5: Wind Rose - Cluster 1

Figure 4.10.6: Wind Rose - Cluster 2

	D3.3: Report on AQ and GHGs concentratior	n at the ground I	evel in the
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 247/269

Figure 4.10.7: Wind Rose - Cluster 3

Figure 4.10.8: Wind Rose - Cluster 4

	D3.3: Report on AQ and GHGs concentration	n at the ground I	evel in the
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 248/269

Figure 4.10.9: Wind Rose - Cluster 5

Figure 4.10.10: Wind Rose - Cluster 6

-	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities									
9	WP3 Integrated atmospheric modelling for connecting pressures to the environment to concentrations at the regional and urban scales	Security:	Public							
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 249/269							

										Win	d16								Total
			S	SSW	SW	WSW	W	WNW	NW	NNW	Ν	NNE	NE	ENE	E	ESE	SE	SSE	
Cluster6	1	Count	0	1	1	16	110	236	241	223	312	484	532	306	42	6	3	1	2514
		% within Cluster6	0.0%	0.0%	0.0%	0.6%	4.4%	9.4%	9.6%	8.9%	12.4%	19.3%	21.2%	12.2%	1.7%	0.2%	0.1%	0.0%	100.0%
	2	Count	28	134	541	1863	395	91	18	3	3	7	3	2	2	4	8	8	3110
		% within Cluster6	0.9%	4.3%	17.4%	59.9%	12.7%	2.9%	0.6%	0.1%	0.1%	0.2%	0.1%	0.1%	0.1%	0.1%	0.3%	0.3%	100.0%
	3	Count	120	187	351	672	387	161	100	112	114	180	391	1134	897	272	116	84	5278
		% within Cluster6	2.3%	3.5%	6.7%	12.7%	7.3%	3.1%	1.9%	2.1%	2.2%	3.4%	7.4%	21.5%	17.0%	5.2%	2.2%	1.6%	100.0%
	4	Count	111	95	109	82	34	34	30	34	55	170	429	726	462	199	130	115	2815
		% within Cluster6	3.9%	3.4%	3.9%	2.9%	1.2%	1.2%	1.1%	1.2%	2.0%	6.0%	15.2%	25.8%	16.4%	7.1%	4.6%	4.1%	100.0%
	5	Count	72	282	748	457	116	12	1	0	0	0	0	0	1	0	0	13	1702
		% within Cluster6	4.2%	16.6%	43.9%	26.9%	6.8%	0.7%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.0%	0.0%	0.8%	100.0%
	6	Count	38	56	101	683	230	100	67	52	64	75	100	387	613	166	57	54	2843
		% within Cluster6	1.3%	2.0%	3.6%	24.0%	8.1%	3.5%	2.4%	1.8%	2.3%	2.6%	3.5%	13.6%	21.6%	5.8%	2.0%	1.9%	100.0%
Total		Count	369	755	1851	3773	1272	634	457	424	548	916	1455	2555	2017	647	314	275	18262
		% within Cluster6	2.0%	4.1%	10.1%	20.7%	7.0%	3.5%	2.5%	2.3%	3.0%	5.0%	8.0%	14.0%	11.0%	3.5%	1.7%	1.5%	100.0%

Table 4.10.4: 16 Wind Direction distribution per cluster

	D3.3: Report on AQ and GHGs concentration at the ground level in the			
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public	
ICARUS	Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 250/269	

Clusters and local Heat Waves

In Figures 4.10.11 and 4.10.12 are presented the heat waves occurrence per 5-year period and per cluster. The most heat waves seem to occur after 2036. The 5-year period 2041-2045 shows the highest number of heat waves, while the next 5-year period shows a decrease. The most heat waves were associated with cluster 3 which correspond to clusters with days belong to warm period (see Table 4.10.2).

Figure 4.10.11: Heat Waves per 5-year period

Figure 4.10.12: Heat Waves per cluster

Clusters versus Air Quality level

As it can be seen in Table 4.1 one observation station have been used for the present analysis. The descriptive statistics for NO₂, O_3 and PM₁₀ is given in Table 4.10.5.

Tuble 4.10.5. All pollutants descriptive statistics				
		NO2	03	PM10
Mean		30.18989	43.14679	33.83737
Std. Deviation		15.187291	26.674553	20.264830
Minimum		2.174	0.355	1.446
Maximum		139.252	142.665	170.900
Percentiles	5	11.74160	5.23900	10.92680
	25	20.09150	20.10000	20.36700
	50	26.98700	41.95500	29.23000
	75	37.23050	62.81300	41.58300
	95	58.51660	89.23900	71.86580

	Table 4.10.5: Air	pollutants	descriptive	statistics
--	-------------------	------------	-------------	------------

Table 4.10.6 presents the pollutants' concentrations per cluster. Higher mean NO_2 concentrations are observed in clusters 2 and 6. Higher mean O_3 concentrations are observed in cluster 6. Higher mean PM_{10} concentrations are observed in clusters 2 and 6.

	Cluster					
	1	2	3	4	5	6
	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
PM10 (μg/m3)	33,46	40,48	25,3 (11,6)	32,72	37,53	41,35
	(19,72)	(22,25)		(20,59)	(21,78)	(23,23)
O3 (µg/m3)	46,8 (27,2)	24,55	60,38	48,23	37,13	25,8
		(19,09)	(21,14)	(25,61)	(26,18)	(18,61)
NO2 (µg/m3)	30,9	37,86	22,06	28,38	33,35	36,38
	(15,89)	(16,72)	(7,62)	(15,24)	(15,9)	(15,33)

Table 4.10.6: Summary pollutant concentrations per cluster

The differences in concentrations per cluster are shown in Figures 4.10.13-4.10.15.

Figure 4.10.13: NO₂ concentration statistics per cluster

Figure 4.10.14: O₃ concentration statistics per cluster

Figure 4.10.15: PM₁₀ concentration statistics per cluster

D3.3: Report on AQ and GHGs concentration at the ground level in the				
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public		
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 253/269		

Representative Days

In the following Table 4.10.7 are presented the selected RDs per 5-year period and per cluster.

Closest days to d	centroids per 5	iyear	clusters					
per cluster			1	2	3	4	5	6
5 year period	2001-2005	1	2005/10/10	2004/11/26	2005/06/15	05-09-2004	2003/05/04	2002/11/01
	2006-2010	2	2006/03/29	2007/02/07	2009/05/19	2008/06/17	2006/05/13	2007/12/06
	2011-2015	3	2015/10/03	2012/11/13	2011/09/03	2012/06/20	2014/10/13	2015/02/04
	2016-2020	4	2020/03/25	2017/11/29	2018/06/01	2016/05/31	2020/10/15	2017/11/05
	2021-2025	5	2025/03/29	2025/12/12	2025/07/31	2023/06/23	2025/03/08	2023/01/24
	2026-2030	6	2030/04/03	2029/10/25	2029/05/25	2030/06/07	2026/03/09	2027/02/26
	2031-2035	7	2033/03/23	2033/11/26	2031/05/27	2035/05/16	2034/04/09	2033/11/15
	2036-2040	8	2038/04/21	2040/11/19	2036/06/08	2037/04/21	2038/12/09	2040/11/10
	2041-2045	9	2041/03/19	2045/02/02	2041/06/02	2045/05/11	2041/03/18	2042/12/14
	2046-2050	10	2047/03/15	2047/11/22	2050/05/10	2049/05/29	2049/03/10	2046/03/11

Selected Clusters and RDs for modeling purposes

Selected RDs will be used to perform targeted weather and air quality simulations within each selected 5-year period estimating hourly/daily concentrations of the priority pollutants to assess the climatic effect on air quality evolution and the characteristics of air quality future episodes. The selection was based on 3-year periods (2016-2020, 2021-2025 and 2031-2035) and on the clusters with the most elevated concentrations of PM₁₀, NO₂ and O₃. In the case of Ljubljana, cluster 2 recorded the most elevated values of NO₂, cluster 3 for the case of O₃ and cluster 6 for the case of PM₁₀. In Table 4.10.8 are presented the selected days which was used for modeling purposes.

Table 4.10.8: RDs for modeling purposes	Table 4.10.8:	RDs for	modeling	purposes
---	---------------	---------	----------	----------

Period	Cluster 2 (NO2)	Cluster 3 (O3)	Cluster 6 (PM)
2016-2020	2017-11-29	2018-06-01	2017-11-05
2021-2025	2025-12-12	2025-07-31	2023-01-24
2031-2035	2033-11-26	2031-05-27	2033-11-15

4.10.3 Air Quality Modeling results

4.10.3.1 Overall results

In Figure 4.10.16 the daily average concentrations of NO₂, O₃, PM_{10} and $PM_{2.5}$ for selected RDs are presented.

Figure 4.10.16: Daily average concentrations

In Figure 4.9.19 the obtained daily averaged concentrations are compared based on USTUTT and EGDAR HTAP emission inventories respectively. The results seem not to differ significantly.

Figure 4.10.17: Daily average concentrations – USTUTT vs EDGAR HTAP comparison

D3.3: Report on AQ and GHGs concentration at the ground level in the				
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public		
Author(s): AUTH, USTUTT, CMCC,	Version: Final	Page 255/269		

4.10.3.2 Clusters results

NO₂ Concentrations (Cluster 2)

In Figure 4.10.18, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.10.19.

The daily maximum concentrations seem to well exceed the EU and WHO yearly limit of $40\mu g/m^3$. The maximum hourly concentrations are above the limit of $200\mu g/m^3$.

O₃ Concentrations (Cluster 5)

In Figure 4.10.20, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.10.21.

The daily maximum concentrations are very close and above the WHO 8hr limit of $100\mu g/m^3$. The maximum hourly concentrations exceed this limit as well as the EU 8hr limit of $120\mu g/m^3$.

PM₁₀ Concentrations (Cluster 7)

In Figure 4.10.22, the results are presented in terms of concentrations average, daily maximum and hourly maximum. The diurnal variations are shown in Figure 4.10.23.

The daily maximum concentrations are above the WHO yearly limit of $20\mu g/m^3$. Both daily maximum and hourly maximum values show a decreasing rate.

-	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 256/269

NO₂-Cluster 2

Figure 4.10.18: NO₂ Day concentrations

Figure 4.10.19: Hourly NO₂ concentrations

-	D3.3: Report on AQ and GHGs concentration at the	ground level in t	he ICARUS cities
0	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 257/269

O₃-Cluster 3

Figure 4.10.20: O₃ Daily concentrations

Figure 4.10.21: O₃ Hourly concentrations

	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
9	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
ICARUS	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 258/269

PM₁₀-Cluster 6

Figure 4.10.22: PM₁₀ Daily concentrations

Figure 4.10.23: PM₁₀ Hourly concentrations

3	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities			
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public	
TOAROO	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 259/269	

PM_{2.5} Concentrations (Cluster 6)

In Figure 4.10.24, the results are presented in terms of concentrations average, daily maximum and hourly maximum.

The daily maximum concentrations are well above the WHO yearly limit of $10\mu g/m^3$ in all days.

Figure 4.10.24: PM_{2.5} Day concentrations

Figure 4.5.29 presents the estimated BaP daily concentrations contained in $PM_{2.5}$. All days are above WHO annual limit of $0.12 ng/m^3$. Concentrations are closer (but above) to the EU annual limit of $1 ng/m^3$.

Figure 4.10.25: BaP daily concentrations

3	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities			
ICARUS	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public	
Ionico	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 260/269	

4.10.3.3 The Emission Inventory effect

Figures 4.10.26, 4.10.27, 4.10.28 and 4.10.29 illustrate the emission inventory temporal change effect on NO₂, O₃, PM₁₀ and PM_{2.5} concentration levels respectively. There is a slight decreasing trend in PM pollutants and an even slighter decrease in NO₂ and O₃ concentrations.

Figure 4.10.26: NO₂ emission inventory comparison

Figure 4.10.27: O₃ emission inventory comparison

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
 Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 261/269

Figure 4.10.28: PM₁₀ emission inventory comparison

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 262/269

4.10.4 The GHGs Modeling results

Figure 4.10.30: (a),(b) CO₂ and CH₄ Daily average concentrations . (c),(d) CO₂ and CH₄ concentrations of the most polluted day

V ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 263/269

4.10.5 Conclusions

For Ljubljana greater area, clusters 2,5 and 6 could be categorized in cold period and on the other hand clusters 3 and 4 in warm period.

In clusters 2 and 5 there is a linear increase in frequency occurrence through the ten 5-year periods. On the other hand, clusters 3 and 8 show a linear decrease in frequency occurrence.

The most heat waves seem to occur after 2036. The 5-year period 2041-2045 shows the highest number of heat waves, while the next 5-year period shows a decrease. The most heat waves were associated with cluster 3 which correspond to clusters with days belong to warm period.

Cluster 2 is characterized with elevated NO_2 concentrations, cluster 3 with elevated O_3 concentrations and cluster 6 with elevated PM concentrations.

 NO_2 daily maximum concentrations seem to well exceed the EU and WHO yearly limit of $40\mu g/m^3$. The maximum hourly concentrations are above the limit of $200\mu g/m^3$.

 O_3 daily maximum concentrations are very close and above the WHO 8hr limit of $100\mu g/m^3$. The maximum hourly concentrations exceed this limit as well as the EU 8hr limit of $120\mu g/m^3$.

 PM_{10} daily maximum concentrations are above the WHO yearly limit of $20\mu g/m^3$. Both daily maximum and hourly maximum values show a decreasing rate.

 $PM_{2.5}$ daily maximum concentrations are well above the WHO yearly limit of $10\mu g/m^3$ in all days.

For BaP concentrations, all days are above WHO annual limit of 0.12ng/m³. Concentrations are closer (but above) to the EU annual limit of 1ng/m³.

Regarding the emission reductions intervention effect, there is a slight decreasing trend in PM pollutants and an even slighter decrease in NO_2 and O_3 concentrations.

4.11 Local heat waves versus O₃ concentrations

In Table 4.11.1 are presented the clusters' number associated with heat waves and elevated O_3 concentrations.

City	O ₃ -Cluster	Heat wave -Cluster
Stuttgart	5	4,5
Athens	4	4,5
Thessaloniki	1	1,7
Milan	7	8,7
Madrid	7	7,9
Ljubljana	3	3
Copenenhagen/Roskilde	4	4
Basel	2	2
Brno	4	5,4

Table 4.11.1:	Local heat	waves versus	O3 concentration	าร
	Locurneut		05 concentration	15

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 265/269

5. Concluding Remarks

To study future climatic change effects on certain subjects such as atmospheric processes and air quality one should consider the inherent uncertainties in trying to mathematically describe the associated phenomena and quantify the relevant input due mainly to lack of knowledge and missing accurate enough input data. In addition, for answers that require high temporal and spatial refinements one may add also the issue computational capacity. Therefore, when quantifying such processes is more reliable to talk about trends rather than absolute values.

In studying climatic trends in the atmosphere, one should consider also the additional difficulty due to high temporal variability of the defining parameters not only on the level of hour and day but also on the level of the year and even beyond.

The objective of the present study is to provide high space and time resolution ground concentrations reflecting climatic trends for the period 2001-2050, of major air pollutants (PM_{10} , $PM_{2.5}$, NO_2 , O_3 , BaP) and major Greenhouse Gases (CO_2 , CH_4) in Europe, focusing on the nine ICARUS cities i.e. Thessaloniki, Athens, Madrid, Stuttgart, Ljubljana, Brno, Milan, Basel and Copenhagen/Roskilde and to assess the effect of climate and emissions changes over time on the air concentration levels of the abovementioned pollutants.

To achieve such an objective and given the today computational capacity limitations, the common approach in the past has been to perform weather and air quality simulations for a complete year but only for a limited number of years. Such an approach has the inherent weakness that the results represent the selected year only and not the neighboring ones due to the inherent high yearly variability.

Taking into consideration all the above-mentioned complexities, the effort in the present study was to come up with a new and smart approach that fulfills the project objective by introducing proper trend indicators and targeted weather and air quality simulations. The adopted methodology is based on weather clustering that has been widely used in the past for weather classification which successfully met the project objectives.

Thus, a novel approach based on weather clustering is inaugurated to study climate change effect on air quality levels. The adopted clustering technique has been applied in daily weather data of 50-year period (from 2001 to 2050) to estimate the appropriate number of clusters. For the years 2006-2050 the weather predictions are based on the future emission scenarios developed by the last IPCC assessment report. In fact, the moderate Representative Concentration Pathway - RCP4.5 was selected which follows a rising radiative forcing pathway leading to 4.5W/m₂ in 2100. The detailed weather data were derived from the Coordinated Regional Climate Downscaling Experiment (CORDEX) provided from the Earth System Grid Federation (ESGF) index nodes. The Regional Climate Model (RCM) INERIS-WRF331F was selected, using the EUR 11 (about 10 km resolution) horizontal domain projection.

To cope with the abovementioned high temporal weather variability, the clustering exercise results are examined over 5-year periods, i.e. 2001-2005, 2006-2010, 2011-2015, 2016-2020, 2021-2025, 2026-2030, 2031-2035, 2036-2040, 2041-2045 and 2046-2050, instead of one year.

Under these circumstances, the detailed atmospheric modeling has been restricted to cluster representative days in each of the above mentioned 5-years period. It should be reminded that a representative day per cluster per 5-year period is identified as the one with the closest distance from the cluster's centroid.

W ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 266/269

The results obtained have shown the following key conclusions:

- 1. The ICARUS studies on climatic change reinforces the view that the greenhouse effect is likely to be 'felt' even under a moderate climatic scenario such as RCP4.5. For the cities of Stuttgart, Ljubljana, Brno, Milan, Basel and Copenhagen/Roskilde the present results indicate that adverse effects at least in terms of heat wave event frequency for this specific scenario, seem to reach maxima in the early 40s. For the cities of the south (Athens, Thessaloniki, Madrid) the maxima shift late 40s and probably beyond.
- 2. The elevated numbers of heat waves are associated with specific weather clusters;
- 3. There is a correlation between weather patterns with higher heat wave events and weather patterns with elevated O_3 concentrations. This is an indication that the greenhouse effect seems to lead to elevated O_3 concentrations likely due to the intensified atmospheric photochemical activity.
- 4. With respect to cluster frequency trend over the 50year period slight changes are observed. More specifically:
 - For all cities, the clusters associated with elevated heat wave events and O_3 concentrations show an increase.
 - The clusters associated with elevated PM show an increase only in Stuttgart and Madrid.
 - The clusters with elevated NO₂ concentrations show an increase in the five cities: Stuttgart, Brno, Basel, Madrid and Ljubljana.
- 5. Concerning the influence of the foreseen emission inventory changes on air pollutant concentrations levels, the detailed atmospheric simulations have shown that the policies incorporated into the adopted emission patterns seem to lead to NO_2 decreases and O_3 slight decreases. In the case of PM, the picture is mixed. For example, in Stuttgart, Milan, Basel and Athens the indication is of clear decrease whereas in Brno there are slight increases. In Madrid and Ljubljana slight decreases in PM concentrations were estimated.
- 6. The detailed atmospheric modelling simulations suggest also that the problem of meeting health standards for NO₂, O₃, PM and BaP will still continue to be an issue in the future.

The present results indicate that climatic change seems to increase atmospheric photochemical activity. Such phenomena could lead to O_3 and SOA concentration increases. On the other hand a significant part of coarse PM is water/minerals. The temperature and humidity is expected to play a significant role due to condensation processes. Hot and dry atmosphere is expected to decrease such a mass fraction.

The results obtained introduce the following hypotheses which need to be verified on experimental and theoretical basis:

- 1. The greenhouse effect intensifies the atmospheric photochemical activity leading to increase of O_3 and SOA concentrations in fine PM fraction.
- 2. The greenhouse effect affects condensation equilibrium due to temperature rising and leading to the reduction of water/minerals PM mass fraction.

D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 267/269

6. References

Austin E., Zanobetti A., Coull B., Schwartz J., Gold D.R. and Koutrakis P. (2014) Ozone trends and their relationship to characteristic weather patterns. Journal of Exposure Science and Environmental Epidemiology, 1–11

Beck C., Philipp A. (2010) Evaluation and comparison of circulation type classifications for the European domain. Physics and Chemistry of the Earth 35, 374–387

Bejaran R.A., Camilloni I.A. (2003) Objective method for classifying air masses: an application to the analysis of Buenos Aires's urban heat island intensity. Theor Appl Climatol 74: 93–103

Cahynova M., Huth R. (2010) Circulation vs. climatic changes over the Czech Republic: A comprehensive study based on the COST733 database of atmospheric circulation classifications. Physics and Chemistry of the Earth 35, 422–428

Chang W., ZhanJ. (2017) The association of weather patterns with haze episodes: Recognition by PM2.5 oriented circulation classification applied in Xiamen, Southeastern China. Atmospheric Research 197, 425–436"

Clarke L.E., Edmonds J.A., Jacoby H.D., Pitcher H., Reilly J.M., Richels R. (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. Sub-report 2.1a of Synthesis and Assessment Product 2.1. Climate Change Science Program and the Subcommittee on Global Change Research, Washington DC

Demuzere M., and N. P. M. van Lipzig, (2010) A new method to estimate air-quality levels using a synoptic-regression approach. Part I: Present-day O3 and PM10 analysis. Atmos. Environ., 44, 1341–1355

Di Filippo P., Riccardi C., Pomata D., Gariazzo C., Buiarelli F. (2010) Seasonal Abundance of Particle-Phase Organic Pollutants in an Urban/Industrial Atmosphere Water Air Soil Pollut, 211, 231-250

EEA (2016) Air Quality in Europe – 2016 Report, No 28/2016, ISBN 978-92-9213-847-9, ISSN 1977-8449, doi:10.2800/80982

ETC/ACM (2011) Evaluation of current limit and target values as set in the EU Air Quality Directive, de Leeuw, F. and Ruyssenaars, P., Technical Paper 2011/3, European Topic Centre on Air Pollution and Climate Change Mitigation

EU, 2004. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 Relating to Arsenic, Cadmium, Mercury, Nickel and Polycyclic Aromatic Hydrocarbons in Ambient Air. OJ L 23, 26.1.2005, pp. 3-16"

Fujino J., Nair R., Kainuma M., Masui T., Matsuoka Y. (2006) Multigas mitigation analysis on stabilization scenarios using aim global model. The Energy Journal Special issue #3:343–354

Guerreiro C.B.B., Horalek J., de Leeuw F., Couvidat F. (2016) Benzo(a)pyrene in Europe: Ambient air concentrations, population exposure and health effects. Environmental Pollution, 214, 657-667

Guerreiro S. B., Dawson R. J, Kilsby C., Lewis E. and Ford A. (2018) Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 13:034009

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 268/269

Hellén H., Kangas L., Kousa A., Vestenius M., Teinilä K., Karppinen A., Kukkonen J., Niemi J.V. (2017) Evaluation of the impact of wood combustion on benzo[a]pyrene (BaP) concentrations; ambient measurements and dispersion modeling in Helsinki, Finland, Atmos. Chem. Phys., 17, 3475–3487

Hijioka Y., Matsuoka Y., Nishimoto H., Masui T., Kainuma M. (2008) Global GHG emission scenarios under GHG concentration stabilization targets. J Glob Environ Eng 13:97–108

Hoffmann P. and Schlunzen K.H. (2013) Weather Pattern Classification to Represent the Urban Heat Island in Present and Future Climate. American Meteorological Society DOI: 10.1175/JAMC-D-12-065.1

Huth R., Beck C., Philipp A., Demuzere M., Ustrnul Z., Cahynová M., Kyselý J., Tveito O. (2008) Classifications of Atmospheric Circulation Patterns. Trends and Directions in Climate Research: Ann. N.Y. Acad. Sci. 1146: 105–152

IARC (2012) Chemical Agents and Related Occupations - Volume 100 F - A Review of Human Carcinogens. In: International Agency for Research on Cancer (IARC) Monographs on the Evaluation of Carcinogenic Risks to Humans, 100F

Kinney P. (2008) Climate Change, Air Quality, and Human Health , Am J Prev Med, 35(5):459–467

Kliucininkas L., Martuzevicius D., Krugly E., Prasauskas T., Kauneliene V., Molnar P., Strandberg B. (2011) Indoor and outdoor concentrations of fine particles, particle-bound PAHs and volatile organic compounds in Kaunas, Lithuania, J. Environ. Monit., 13, 182–191

Kozlowska W.R., Kozielska B., Klejnowski K., Szopa S. (2013), Hazardous compounds in urban PM in the central part of Upper Silesia (Poland) in winter, Archives of Environmental Protection, 39, 53-65

Lloyd Stuart P. (1982) Least Squares Quantization in PCM. IEEE Transactions on Information Theory. Vol. 28, pp. 129–137

Makkonen U., Hellén H., Anttila P., Ferm M., (2010) Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006, Science of the Total Environment 408, 644–651

Makra L., Mika J., Bartzokas A., Béczi R., Borsos E., Sümeghy Z. (2006) An objective classification system of air mass types for Szeged, Hungary, with special interest in air pollution levels. Meteorol. Atmos. Phys. 92: 115

Moertini V.S. (2002) Introduction to five data clustering algorithms. Integral, Vol. 7, No. 2

Preisendorfer R.W., Mobley C.D. (1988) Principal components analysis in meteorology and oceanography. Developments in Atmospheric Sciences 17, Elsevier, Amsterdam

Riahi K., Grübler A., Nakicenovic N. (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74:887–935

Rimetz-Planchon J., Perdrix E., Sobanska S., Bremard C. (2008) PM10 air quality variations in an urbanized and industrialized harbor. Atmospheric Environment 42, 7274–7283

Saarnio K., Sillanpaa M., Hillamo R., Sandell E., Pennanen A.S., Salonen R.O. (2008) Polycyclic aromatic hydrocarbons in size-segregated particulate matter from six urban sites in Europe , Atmospheric Environment 42, 9087-9097

Serra C., Fernadez-Mills G., Periago M.C., and Lana X. (1999) Winter synoptic types in Catalonia and their linkage with minimum temperature anomalies. Int J Climatol 19:1675–1695

ICARUS	D3.3: Report on AQ and GHGs concentration at the ground level in the ICARUS cities		
	WP3 Integrated atmospheric modelling for connecting pressures to the environment to	Security:	Public
	Author(s): AUTH, USTUTT, CMCC, NCSRD	Version: Final	Page 269/269

Serra C., Fernadez-Mills G., Periago M.C., and Lana X. (1999) Winter synoptic types in Catalonia and their linkage with minimum temperature anomalies. Int J Climatol 19:1675–1695

Sfetsos A., Bartzis J. (2007) Real time, high resolution regional weather and air quality forecasting system in west Macedonia, Greece, Proceedings of the 11th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

Sfetsos A., Vlachogiannis D., Gounaris N., Stubos A.K. (2005) On the identification of representative samples from large data sets, with application to synoptic climatology. Theor. Appl. Climatol. 82, 177–182

Smith S.J., Wigley T.M.L. (2006) MultiGas forcing stabilization with minicam. The Energy Journal Special issue #3:373–392

Taylor K.E., Stouffer R.J., and Meehl G.A. (2012) An Overview of CMIP5 and the Experiment Design. Bull. Amer. Meteorol. Soc., 93:485–498doi:10.1175/BAMS-D-11-00094.1

Thomson A.M., Calvin K.V., Smith S.J., Kyle G.P., Volke A., Patel P., Delgado-Arias S., Bond- Lamberty B., Wise M.A., Clarke L.E., and Edmonds J.A. (2011) RCP4.5: a pathway! For stabilization of radiative forcing by 2100. Climatic&Change,109,77Q94

van Vuuren D.P., Edmonds J., Kainuma M. et al. (2011) The representative concentration pathways: an overview. Climatic Change, 109:5–31

Van Vuuren DP, Den Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, Van Ruijven B, Wonink S, Van Houdt R (2007a) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Chang 81:119–159

VanVuuren D.P., Eickhout B., Lucas P..L, den Elzen M.G.J. (2006) Long-termmulti-gas scenarios to stabilise radiative forcing—exploring costs and benefits within an integrated assessment framework. Energ J 27:201–233

Vercauteren J., Matheeussen C., Wauters E., Roekens E., van Grieken R., Krata A., Makarovska Y., Maenhaut W., Chi X., Geypens B., (2011) Chemkar PM10: An extensive look at the local differences in chemical composition of PM10 in Flanders, Belgium, Atmospheric Environment 45, 108-116

WHO (2010), WHO guidelines for indoor air quality: selected pollutants, World Health Organization, European Centre for Environment and Health, Bonn

Wise M., Calvin K., Thomson A., Clarke L., Bond-Lamberty B., Sands R., Smith S.J., Janetos A., Edmonds J. (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324:1183–1186