

ICARUS

Integrated Climate forcing and Air pollution Reduction in Urban Systems

AIR POLLUTION HEALTH IMPACT ASSESSMENT AND COST-BEENFIT ANALYSIS OF WIN-WIN POLICY SOLUTIONS AT THE URBAN SCALE IN THE CITY OF MILAN

<u>Marco Giovanni Persico*</u>, Alberto Gotti, Francesca Bugnoni, Jaideep Visave, Spyros Karakitsios, Ioannis Sakellaris, John Bartzis, Julia Neuhaeuser, Rainer Friedrich, Anna Maccagnan, Tim Taylor, *Dimosthenis Sarigiannis*

marco.persico@eucentre.it

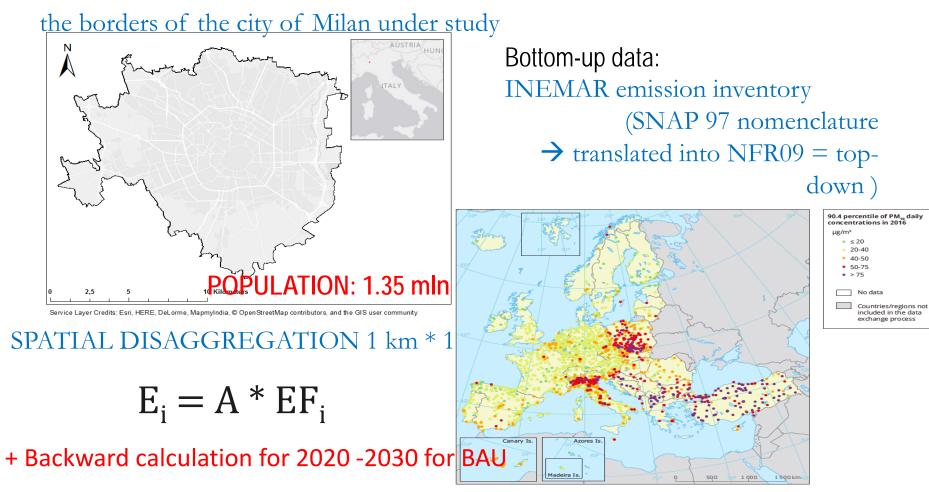
*EUCENTRE, European Centre for Training and Research in Earthquake Engineering, Pavia, Italy This project has received funding from the European Union's H2020 Framework Programme under grant agreement No - 690105

Schematic representation of the concept and related work

potential implementation of selected M1 M4 M2 measures and policy options A LIST OF POSSIBLE MEASURES M6 M5 M... M3 towards integrated win-win solutions Combining common measures into clusters (2020 - 2030)CLUSTERING for further analysis M3 M5 M2 M1 M6 (1) emissions of air pollutants; (2) emissions of greenhouse gases; EMISSION (3) ambient concentration of (1) and (2); PREDICTION OF THE IMPROVEMENT MODELLING **CEA/CBA RESULTS** NTEGRATION OF LEVEL OF AIR QUALITY (4) Exposure of people to air pollutants; (MODELLING (5) associated impacts on human health POLLUTION MODELLING (ĤIA); (6) Cost – Benefit Analysis (CBA) **HEALTH IMPACT** ASSESSMENT ø Results of the HIA for selected measures Results of the CEA/CBA for selected AIH measures COST-BENEFIT ANALYSIS

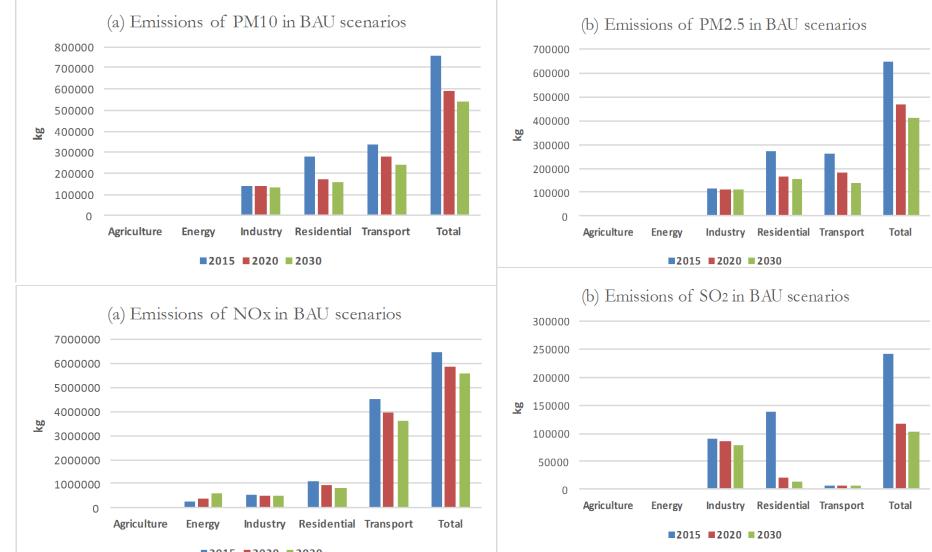
- Baseline (2015) -
- BAU 2020 and 2030 EMISSION =ACTIVITY Х

EMISSION FACTOR


- spatially distributed within the
 - city area (1 km x 1 km grid) **BOTTOM-UP** and
- **TOP-DOWN** approaches

List of pollutants and GHGs for which emission factors are available

Greenhouse gases		"Classical" air pollutants		Heavy metals, PAH, dioxins		
1.	CH ₄	1.	PM_{10}	1.	Cadmium	
2.	CO ₂	2.	PM _{2.5}	2.	Arsenic	
3.	N_2O	3.	Black carbon	3.	Mercury	
		4.	Organic	4.	Lead	
		5.	carbon NO _x	5.	Benzo(a)pyrene as marker substance	
		 SO₂ SO₂ CO 			for total PAHs (polycyclic	
					aromatic hydrocarbons)	
	8. NH		NH ₃	(,	
	9.	9.	NMVOC	6.	PCDD/PCDF as indicator for dioxins and furans	


Notes: Observed concentrations of PM₁₀ in 2016. The possibility of subtracting contributions to the measured concentrations from natural sources and winter road sanding/sality has not been considered. The map shows the 90.4 percentile of the PM₁₀ daily mean concentrations, representing the 36th highest value in a complete series. It is related to the PM₁₀ daily limit value, allowing 35 exceedances of the 50 µg/m² threshold over 1 year. Dots in the last two colour categories indicate stations with concentrations above this daily limit value. Only stations with more than 75 % of valid data have been included in the map. The French overseas territories' stations are not shown in the map that thtps://www.eea.europa.eu/data-and-maps/dashoards/air-quality-statistics.

Milan City – Emission Scenarios BAU 2020 - 2030

20th MESAEP Symposium - ICARUS session

Integrated Climate forcing and Air pollution Reduction in Orban Systems (ICARUS). The European Union's Horizon 2020 research and innovation programme - grant agreement No 690105

The impacts of the five selected policy options were carried out under the assumption of <u>RCP4.5 scenario for climate change</u>

	Resolution (sectors)	Resolution (geographical)
Emissions of greenhouse gases		
CO ₂	Energy/industry, land	Global and for 5 regions
CH ₄	12 sectors	0.5°×0.5° grid
N_2O , HFCS, PFCS, CFCS, SF ₆	Sum	Global and for 5 regions
Emissions aerosols and chemically active gases		
SO ₂ , black carbon (BC), organic carbon	12 sectors	0.5°×0.5° grid
(OC), CO, NOx, VOCs, NH ₃		
Speciation of VOC emissions		0.5°×0.5° grid
Concentration of greenhouse gases		
$(CO_2, CH_4, N_2O, HFCS, PFCS, CFCS, SF_6)$	-	Global
Concentrations of aerosols and chemically active gases		
(O ₃ , aerosols, n deposition, s deposition)	-	0.5°×0.5° grid
Land-use/land-cover data	Cropland, pasture, prima vegetation, seconda vegetation, forests	· · · · · ·

RCP4.5 Stabilization of radiative forcing without overshoot pathway to 4.5 W/m^2 (~650 ppm CO₂ eq) at stabilization after 2100

Pollutant Concentration Trends: pollutant representative air concentration (CR)

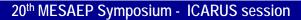
Emission Trends Influence: representative days for the clusters with high [air pollutants] have been simulated with 3 EI: 2015, 2020 and 2030

Green House Gases (GHGs):

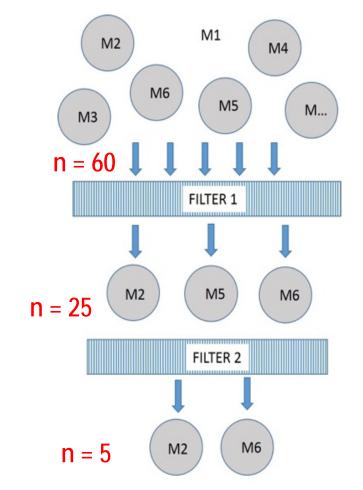
6-hour frequency 1951 to 2100 CO_2 and CH_4 anthropogenic emissions (ICARUS db). Results 12*12 km

 $CR(\Delta \tau) = \sum_{n=1}^{N} f_n(\Delta \tau) \cdot CRD_n(\Delta \tau)$

N =total number of Cluster *s*


 $f_n(\Delta \tau) = \text{frequency of occurrence of }$

 $CRD_n(\Delta \tau) =$ concentration under study corresponding to the representative day of the cluster *n* during the time period $\Delta \tau$


FINAL RESULTS: high space and time resolution ground concentrations reflecting climatic trends until 2050, of air pollutants (PM10, PM2.5, NO₂, O₃) and GHGs (CO₂, CH₄) in Milan and to assess the effect emissions changes

Policies evaluation

STEP 1: LIST OF POTENTIAL POLICIES & MEASURES

STEP 2:

Selecting seemingly effective/ feasible policies & measures

STEP 3:

SELECTION OF POLICIES & MEASURES FOR DETAILED EVALUATION

STEP 4:

Prediction of the improvement of air quality, health & climate; COST-BENEFIT-ANALYSIS FEASIBILITY ANALYSIS

PROPOSED MEASURES

INPUTS

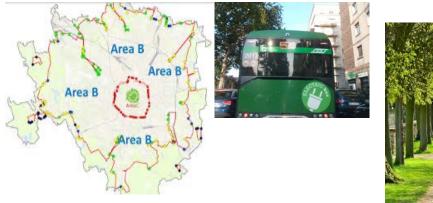
-

- selected city measures
- activity-emission-factor DB or EI (spatially distributed)
- emission reduction potential

STAKEHOLDERS ENGAGEMENT

OUTPUTS

- New 5 El scenarios (2020-2030)
- New Input in AQ modelling
- Input for Health Impact Assesment (HIA) and Cost Benefit Analysis (CBA)



TRANSPORTS

(1) Low Emission Zone ("Area B")

Limitation to polluting vehicles Steps year-by-year 2019-2030 Complete banning of diesel (2030)

(2) Conversion of public buses to electric ones From 2020 renewal: exclusively electric vehicles 2030: whole bus fleet converted (1200 vehichles)

BUILDINGS

(3) Improvement of energy efficiency in residential flats package of regulations (existing and new buildings) Financial incentives: renovation, energy savings, etc.

ENERGY SUPPLY

(4) Photovoltaic / solar power + district heating Incentive measures of new building regulation city's district heating network, 730,000 people

LAND USE (5) Planting of 25000 new trees per year 3 million trees by 2030 in metropolitan city green canopy area from 7% to 20%

Selection Criteria: Effectiveness, Efficiency, Acceptability

Emission variation (%) in policies scenarios 2020 (a) and 2030 (b) compared to BAU

(a) Year 2020	NH3	NMVOC	NOx	PM 10	PM 25	SO 2
BAU						
AreaB	-4,21%	-0,68%	-10,80%	-6,81%	-6,24%	-1,19%
ElectricBus	-0,05%	-0,02%	-1,01%	-0,20%	-0,14%	-0,03%
Buildings	0,00%	-0,06%	-0,69%	-0,04%	-0,05%	-0,49%
Energy	0,00%	-0,06%	-1,29%	-0,18%	-0,23%	-4,60%
Trees	0,00%	0,00%	-0,01%	-0,16%	-0,03%	-0,21%
(b) 2030	NH3	NMVO	C NO	X PM 10	PM 25	SO 2
BAU						
AreaB	-7,25%	-4,71%	-54,67%	-19,87%	-16,60%	-4,89%
ElectricBus	-0,43%	-0,05%	-7,65%	-1,61%	-0,68%	-0,28%
Buildings	0,00%	-0,22%	-2,69%	-0,16%	-0,21%	-2,10%
Energy	0,00%	-0,15%	-3,06%	-0,27%	-0,36%	-1,59%
Trees	0,00%	0,00%	-0,09%	-2,06%	-0,45%	-2,75%

Total greenhouse gas emission reductions for the city scenarios

	2020			2030		
Measure name	CH₄ [kg]	CO ₂ [kg]	N ₂ O [kg]	CH₄ [kg]	CO ₂ [kg]	N ₂ O [kg]
Buildings	-2876	-63281097	-1151	-10759	-236702720	-4303
Electricbus	-171	-3057103	-192	-426	-9759901	-1385
Energy	-4083	-89419270	-1250	-8188	-198908550	-2539
Trees	0	-800000	0	0	-8800000	0
Area B	-5085	-209950556	-8134	-16377	-653301684	-28283

climatic trends (for all measure scenario) from 2021 to 2050:

- O_3 decrease in the years 2021-2035 and then an increase.
- PM_{10} and $PM_{2.5}$ increase for years 2021-2035

"scientific evaluation of potential adverse health effects resulting from human exposure to a particular hazard (i.e. air pollution);

[...]

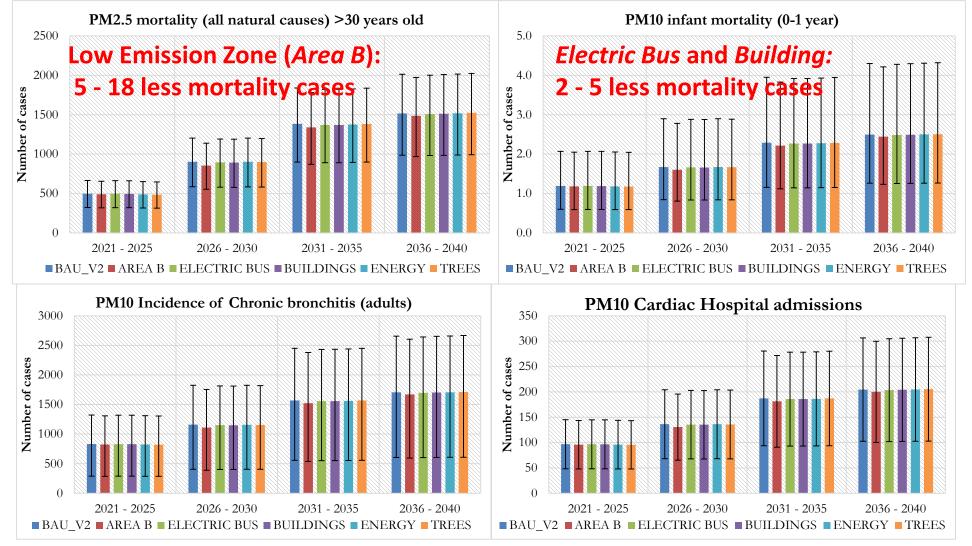
a comprehensive approach to the evaluation of the current state-of-theenvironment and of future conditions following specific abatement scenarios" (WHO)

- (i) amount of air pollution present,i.e. pollutant concentrations (CRFs);
- (ii) the amount of contact (exposure) of the targeted population to pollutants;
- (iii) how harmful the concentration is for human health, i.e. the resulting health risks to the exposed population.
- + Spatial /Geographic Information Science!

$$AF = \frac{\sum_{i} P_i \cdot RR_i - 1}{\sum_{i} P_i \cdot RR_i}$$

population attributable risk fraction (AF):

 P_i is the proportion of the population at exposure category *i* RR_i is the relative risk at exposure category *i* compared to the reference level

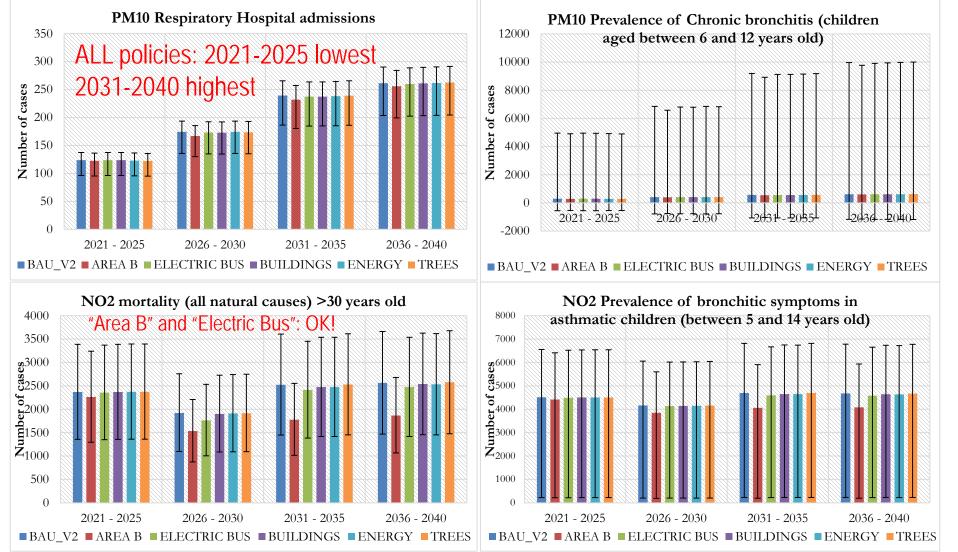


HEALTH IMPACT ASSESSMENT RESULTS

20th MESAEP Symposium - ICARUS session

Whole Simulated Domain Area (50 x 50 km)

Integrated Climate forcing and Air pollution Reduction in Urban Systems (ICARUS). The European Union's Horizon 2020 research and innovation programme - grant agreement No 690105


HEALTH IMPACT ASSESSMENT RESULTS

20th MESAEP Symposium - ICARUS session

Whole Simulated Domain Area (50 x 50 km)

H2020-SC5-2015 - GA: 690105

26-27/10/2020

Integrated Climate forcing and Air pollution Reduction in Urban Systems (ICARUS). The European Union's Horizon 2020 research and innovation programme - grant agreement No 690105

Results of the Cost-benefit analysis and Cost-effectiveness

	M1	M2	M3	M4	M5
MEASURES/ POLICY SCENARIOS	Milan area B	Milan e-bus	(energy)*	(buildings)*	Milan trees
	Low Emission Zone	Replacement of entire bus fleet with electric buses	Energy efficiency improvements	Solar power in buildings	Green area and new trees
Net Present Costs (€)	14,272,436	77,187,492	unknown	unknown	49,496,900
Net present health benefits (€)	11,964,987,522	2,454,269,532	632,400,540	761,524,521	83,830,490
Net Present Other non-health benefits (€)	29,041,252				
Net Present Value Carbon savings (€)	158,871,091	2,402,922	55,898,495	56,134,451	1,641,954
Net present total benefits (€)	12,152,899,865	2,456,672,453	688,299,035	817,658,972	85,472,444
NPV (€)	<mark>12,138,627,429</mark>	<mark>2,379,484,961</mark>	688,299,035	817,658,972	35,975,544
B/C Ratio	851.49	31.83	* costs		1.73
FICOSTEF	2.61	932.57			<mark>875.17</mark>
FUCOSTEF	- 2,189	- 28,719	missing ir	nformation	<mark>- 607</mark>

Result of policies assessment

	Impacts						
Policies	Emissions	Air pollution	Health	СВА	GHG		
Transport «Area B» (LEZ)	++	+	+	++	++		
Transport Electric Bus	+	Ο	+	++	+		
Buildings	Ο	Ο	Ο	(+) / unknown costs	++		
Energy	Ο	Ο	0	(+) / unknown costs	+		
Land use (trees)	n/a	+	0	+	Ο		

- SET-UP methodology to create EI scenarios \rightarrow Evaluation of Policies \rightarrow AQ modelling \rightarrow HIA \rightarrow CBA
- Strategies which allowed the city partners and main polluters to engage with this issues, and settle to the win-win solution for AIR QUALITY and CLIMATE CHANGE
- Building ongoing communication and lifelong partnerships with parties
- "PEOPLE FIRST": Transfer ownership of the policies to citizens
- Assisted and trained stakeholders in urban impact assessment as well as educate them about the health and environmental benefits

(engagement strategy – decision making process)

- Series of recommendations to policy makers: minimise the pollution and their consequent health effects
- Raised citizen awareness regarding the impacts of their activities on air pollution and climate forcing and increase societal acceptance of emission reduction policies

ICARUS

https://icarus2020.eu

Prof. Dimosthenis Sarigiannis (ICARUS Project Coordinator) Jaideep Visave Francesca Bugnoni Enrico Ponte Marco G. Persico

https://www.eucentre.it

Dr. Alberto Gotti (ICARUS Project Manager)

EUCENTRE

FOR YOUR SAFETY.

Aristotle University of Thessaloniki https://www.enve-lab.eu

e.mail: marco.persico@eucentre.it

26-27/10/2020

ADDITIONAL SLIDES

AIR QUALITY MODELLING AND CLUSTERING Pollutant Concentration Trends: pollutant representative air concentration functions (CRFs)

Emission Trends Influence:

representative days for the clusters with high [air pollutants] have been simulated with 3 EI: 2015, 2020 and 2030

Green House Gases (GHGs):

6-hour frequency 1951 to 2100 CO_2 and CH_4 anthropogenic emissions (ICARUS db). Results 12*12 km

WRF-Chem : Weather Research and Forecasting (WRF) model coupled with Chemistry emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology

 $CR(\Delta \tau) = \sum_{n=1}^{N} f_n(\Delta \tau) \cdot CRD_n(\Delta \tau)$

N =total number of Cluster n

 $f_n(\Delta \tau) = \text{frequency of occurrence of }$

 $CRD_n(\Delta \tau) =$ concentration under study corresponding to the representative day of the cluster *n* during the time period $\Delta \tau$

FINAL RESULTS: high space and time resolution ground concentrations reflecting climatic trends until 2050, of air pollutants (PM10, PM2.5, NO₂, O₃) and GHGs (CO₂, CH₄) in Milan and to assess the effect emissions changes

COST-BENEFIT ANALYSIS

- Net Present Value (NPV) of total discounted costs and benefits;
- Benefit/Cost Ratio (B/C)

cost-effectiveness analysis:

- **Financial cost-effectiveness (FICOSTEF)**: financial cost per tC saved (CO₂equivalent)
- Full cost-effectiveness (FUCOSTEF): full cost (costs-benefit) per tC saved (CO₂equivalent)

General assumptions and Monetary Valuation of Impacts

Discounting: 3.5% discount rate (cost of capital) – all values in 2018 prices Time horizon of the CBA: initial investment year – last HIA year available Value of Carbon: Social Cost of Carbon (SCC) set at \$31 (€₂₀₁₈29.03) Health Endpoint valuation: [Hunt, 2011] central figure, and a low and high estimate Health benefits from walking and cycling: WHO Europe Health Economic Assessment Tool Noise: traffic reductions; switching from conventional cars to electric vehicles [Litman, 2011] Accidents: Benefit with shift from conventional car other transport modes [Litman, 2011] Travel time losses: Costs with shift from conventional car other transport modes [Litman, 2011]

Biomass burning issue – Pizza: the Italian "taboo"

In 2015 (official EI), PM10 from «pizzerie»: 16% of the total emission in Milan (residential plants: 5.6%; industry sector: 1.5%)

Benzo[a]Pyrene: 33,4% of the total BaP emission

FUTURE WORK

- A multi-objective optimization methodology will be devised encompassing high dimensional data fusion and refined tools for environmental and health impact assessment;
- Integration of complex systems dynamics that incorporate the interactions between activity sectors and the respective behavioural changes (Agent Based Modelling ABM);
- Health impact assessment will incorporate internal dosimetry methodologies (PM sizes);

SENSOR CAMPAIGNS run in 2019 winter and summer in Milan (100 citizens) Personal exposure to air pollutants – indoor & outdoor

- Results of the policy analyses will allow to determine the most sustainable GHG mitigation and AQ
 improvement strategies (guidance for decision-making): maximizing the net public health and wellbeing
 benefits while taking into consideration the costs associated with air pollution and climate change in the EU;
- Decision Support System (DSS): interactive platform for selection, application and evaluation of the available datasets and tools for urban impact assessment + web- and smartphone-based tool (lifestyle and carbon footprint)